-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain-ctc.yaml
170 lines (148 loc) · 3.61 KB
/
train-ctc.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
name: "FastConformer-CTC-BPE"
model:
sample_rate: 16000
log_prediction: true
ctc_reduction: 'mean_volume'
skip_nan_grad: false
train_ds:
manifest_filepath: manifest_files/train_manifest.json
sample_rate: ${model.sample_rate}
batch_size: 32
shuffle: true
num_workers: 8
pin_memory: true
max_duration: 16.7
min_duration: 0.1
is_tarred: false
tarred_audio_filepaths: null
shuffle_n: 2048
bucketing_strategy: "fully_randomized"
bucketing_batch_size: null
validation_ds:
manifest_filepath: manifest_files/adapt_manifest.json
sample_rate: ${model.sample_rate}
batch_size: 32
shuffle: false
use_start_end_token: false
num_workers: 8
pin_memory: true
test_ds:
manifest_filepath: null
sample_rate: ${model.sample_rate}
batch_size: 16
shuffle: false
use_start_end_token: false
num_workers: 8
pin_memory: true
tokenizer:
dir: tokenizer
type: bpe
preprocessor:
_target_: nemo.collections.asr.modules.AudioToMelSpectrogramPreprocessor
sample_rate: ${model.sample_rate}
normalize: "per_feature"
window_size: 0.025
window_stride: 0.01
window: "hann"
features: 80
n_fft: 512
log: true
frame_splicing: 1
dither: 0.00001
pad_to: 0
pad_value: 0.0
spec_augment:
_target_: nemo.collections.asr.modules.SpectrogramAugmentation
freq_masks: 2
time_masks: 10
freq_width: 27
time_width: 0.05
encoder:
_target_: nemo.collections.asr.modules.ConformerEncoder
feat_in: ${model.preprocessor.features}
feat_out: -1
n_layers: 16
d_model: 256
# Sub-sampling params
subsampling: dw_striding
subsampling_factor: 8
subsampling_conv_channels: 256
causal_downsampling: false
# Feed forward module's params
ff_expansion_factor: 4
# Multi-headed Attention Module's params
self_attention_model: rel_pos
n_heads: 4
att_context_size: [-1, -1]
att_context_style: regular
xscaling: true
untie_biases: true
pos_emb_max_len: 5000
# Convolution module's params
conv_kernel_size: 9
conv_norm_type: 'batch_norm'
conv_context_size: null
### regularization
dropout: 0.1
dropout_pre_encoder: 0.1
dropout_emb: 0.0
dropout_att: 0.1
# set to non-zero to enable stochastic depth
stochastic_depth_drop_prob: 0.0
stochastic_depth_mode: linear
stochastic_depth_start_layer: 1
decoder:
_target_: nemo.collections.asr.modules.ConvASRDecoder
feat_in: null
num_classes: -1
vocabulary: []
interctc:
loss_weights: []
apply_at_layers: []
optim:
name: adamw
lr: 1e-3
betas: [0.9, 0.98]
weight_decay: 1e-3
# scheduler setup
sched:
name: CosineAnnealing
warmup_steps: 5000
warmup_ratio: null
min_lr: 1e-6
trainer:
devices: -1
num_nodes: 1
max_epochs: 1000
max_steps: -1
val_check_interval: 1.0
accelerator: auto
strategy: ddp
accumulate_grad_batches: 64
gradient_clip_val: 0.0
precision: 32
log_every_n_steps: 10
enable_progress_bar: True
num_sanity_val_steps: 0
check_val_every_n_epoch: 1
sync_batchnorm: true
enable_checkpointing: False
logger: false
benchmark: false
exp_manager:
exp_dir: null
name: ${name}
create_tensorboard_logger: true
create_checkpoint_callback: true
checkpoint_callback_params:
monitor: "val_wer"
mode: "min"
save_top_k: 5
always_save_nemo: True
resume_from_checkpoint: null
resume_if_exists: false
resume_ignore_no_checkpoint: false
create_wandb_logger: false
wandb_logger_kwargs:
name: null
project: null