-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdl_copy.py
266 lines (225 loc) · 10.6 KB
/
dl_copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import datetime
import numpy as np
from PIL import Image
from skimage.color import rgb2lab, lab2rgb
from google.cloud import storage
import torch
from fastai.vision.learner import create_body
from torchvision.models import resnet18
from fastai.vision.models.unet import DynamicUnet
from torch import nn, optim
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def build_res_unet(n_input=1, n_output=2, size=256):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
body = create_body(resnet18(pretrained=True), n_in=n_input, cut=-2)
net_G = DynamicUnet(body, n_output, (size, size)).to(device)
return net_G
def init_weights(net, init='norm', gain=0.02):
def init_func(m):
classname = m.__class__.__name__
if hasattr(m, 'weight') and 'Conv' in classname:
if init == 'norm':
nn.init.normal_(m.weight.data, mean=0.0, std=gain)
elif init == 'xavier':
nn.init.xavier_normal_(m.weight.data, gain=gain)
elif init == 'kaiming':
nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
if hasattr(m, 'bias') and m.bias is not None:
nn.init.constant_(m.bias.data, 0.0)
elif 'BatchNorm2d' in classname:
nn.init.normal_(m.weight.data, 1., gain)
nn.init.constant_(m.bias.data, 0.)
net.apply(init_func)
print(f"model initialized with {init} initialization")
return net
def init_model(model, device):
model = model.to(device)
model = init_weights(model)
return model
class GANLoss(nn.Module):
def __init__(self, gan_mode='vanilla', real_label=1.0, fake_label=0.0):
super().__init__()
self.register_buffer('real_label', torch.tensor(real_label))
self.register_buffer('fake_label', torch.tensor(fake_label))
if gan_mode == 'vanilla':
self.loss = nn.BCEWithLogitsLoss()
elif gan_mode == 'lsgan':
self.loss = nn.MSELoss()
def get_labels(self, preds, target_is_real):
if target_is_real:
labels = self.real_label
else:
labels = self.fake_label
return labels.expand_as(preds)
def __call__(self, preds, target_is_real):
labels = self.get_labels(preds, target_is_real)
loss = self.loss(preds, labels)
return loss
class PatchDiscriminator(nn.Module):
def __init__(self, input_c, num_filters=64, n_down=3):
super().__init__()
model = [self.get_layers(input_c, num_filters, norm=False)]
model += [self.get_layers(num_filters * 2 ** i, num_filters * 2 ** (i + 1), s=1 if i == (n_down-1) else 2)
for i in range(n_down)] # the 'if' statement is taking care of not using
# stride of 2 for the last block in this loop
model += [self.get_layers(num_filters * 2 ** n_down, 1, s=1, norm=False, act=False)] # Make sure to not use normalization or
# activation for the last layer of the model
self.model = nn.Sequential(*model)
def get_layers(self, ni, nf, k=4, s=2, p=1, norm=True, act=True): # when needing to make some repeatitive blocks of layers,
layers = [nn.Conv2d(ni, nf, k, s, p, bias=not norm)] # it's always helpful to make a separate method for that purpose
if norm: layers += [nn.BatchNorm2d(nf)]
if act: layers += [nn.LeakyReLU(0.2, True)]
return nn.Sequential(*layers)
class UnetBlock(nn.Module):
def __init__(self, nf, ni, submodule=None, input_c=None, dropout=False,
innermost=False, outermost=False):
super().__init__()
self.outermost = outermost
if input_c is None: input_c = nf
downconv = nn.Conv2d(input_c, ni, kernel_size=4,
stride=2, padding=1, bias=False)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = nn.BatchNorm2d(ni)
uprelu = nn.ReLU(True)
upnorm = nn.BatchNorm2d(nf)
if outermost:
upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4,
stride=2, padding=1)
down = [downconv]
up = [uprelu, upconv, nn.Tanh()]
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(ni, nf, kernel_size=4,
stride=2, padding=1, bias=False)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
model = down + up
else:
upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4,
stride=2, padding=1, bias=False)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]
if dropout: up += [nn.Dropout(0.5)]
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost:
return self.model(x)
else:
return torch.cat([x, self.model(x)], 1)
class Unet(nn.Module):
def __init__(self, input_c=1, output_c=2, n_down=8, num_filters=64):
super().__init__()
unet_block = UnetBlock(num_filters * 8, num_filters * 8, innermost=True)
for _ in range(n_down - 5):
unet_block = UnetBlock(num_filters * 8, num_filters * 8, submodule=unet_block, dropout=True)
out_filters = num_filters * 8
for _ in range(3):
unet_block = UnetBlock(out_filters // 2, out_filters, submodule=unet_block)
out_filters //= 2
self.model = UnetBlock(output_c, out_filters, input_c=input_c, submodule=unet_block, outermost=True)
class MainModel(nn.Module):
def __init__(self, net_G=None, lr_G=2e-4, lr_D=2e-4,
beta1=0.5, beta2=0.999, lambda_L1=100.):
super().__init__()
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.lambda_L1 = lambda_L1
if net_G is None:
self.net_G = init_model(Unet(input_c=1, output_c=2, n_down=8, num_filters=64), self.device)
else:
self.net_G = net_G.to(self.device)
self.net_D = init_model(PatchDiscriminator(input_c=3, n_down=3, num_filters=64), self.device)
self.GANcriterion = GANLoss(gan_mode='vanilla').to(self.device)
self.L1criterion = nn.L1Loss()
self.opt_G = optim.Adam(self.net_G.parameters(), lr=lr_G, betas=(beta1, beta2))
self.opt_D = optim.Adam(self.net_D.parameters(), lr=lr_D, betas=(beta1, beta2))
def set_requires_grad(self, model, requires_grad=True):
for p in model.parameters():
p.requires_grad = requires_grad
def setup_input(self, data):
self.L = data['L'].to(self.device)
self.ab = data['ab'].to(self.device)
def forward(self):
self.fake_color = self.net_G(self.L)
def backward_D(self):
fake_image = torch.cat([self.L, self.fake_color], dim=1)
fake_preds = self.net_D(fake_image.detach())
self.loss_D_fake = self.GANcriterion(fake_preds, False)
real_image = torch.cat([self.L, self.ab], dim=1)
real_preds = self.net_D(real_image)
self.loss_D_real = self.GANcriterion(real_preds, True)
self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5
self.loss_D.backward()
def backward_G(self):
fake_image = torch.cat([self.L, self.fake_color], dim=1)
fake_preds = self.net_D(fake_image)
self.loss_G_GAN = self.GANcriterion(fake_preds, True)
self.loss_G_L1 = self.L1criterion(self.fake_color, self.ab) * self.lambda_L1
self.loss_G = self.loss_G_GAN + self.loss_G_L1
self.loss_G.backward()
def optimize(self):
self.forward()
self.net_D.train()
self.set_requires_grad(self.net_D, True)
self.opt_D.zero_grad()
self.backward_D()
self.opt_D.step()
self.net_G.train()
self.set_requires_grad(self.net_D, False)
self.opt_G.zero_grad()
self.backward_G()
self.opt_G.step()
net_G = build_res_unet(n_input=1, n_output=2, size=256)
net_G.load_state_dict(torch.load("res18-unet.pt", map_location=device))
model = MainModel(net_G=net_G)
model.load_state_dict(torch.load("final_model.pt", map_location=device))
import json
json_file_path="data.json"
def add_entry_to_json_file(json_file_path, new_entry):
entry={
new_entry : new_entry ,
}
try:
# Read the existing JSON data
with open(json_file_path, 'r') as file:
data = json.load(file)
except FileNotFoundError:
# If file doesn't exist yet, start with an empty list/dictionary
data = []
# Append the new entry to the existing data
data[new_entry]=new_entry
# Write back to the JSON file
with open(json_file_path, 'w') as file:
json.dump(data, file, indent=4) # indent for pretty formatting
print(f"Added new entry to {json_file_path}")
def upload_image_to_bucket(bucket_name, image_path, destination_blob_name):
from upload import upload_blob
return upload_blob(bucket_name, image_path, destination_blob_name)
def colorize_image(img_path):
img = Image.open(img_path).convert("RGB")
# Resize the image while maintaining aspect ratio
original_width, original_height = img.size
new_height = 256
new_width = int(original_width / original_height * new_height)
img = img.resize((new_width, new_height), Image.BICUBIC)
img = np.array(img)
img_lab = rgb2lab(img).astype("float32")
L = img_lab[:, :, 0] / 50. - 1.
L = torch.tensor(L).unsqueeze(0).unsqueeze(0).to(model.device) # Add batch and channel dimensions
with torch.no_grad():
model.net_G.eval()
ab = model.net_G(L)
ab = ab.squeeze(0).cpu().numpy()
L = (L.squeeze(0) + 1.) * 50.
ab = ab * 110.
Lab = np.concatenate([L, ab], axis=0).transpose(1, 2, 0)
rgb_img = lab2rgb(Lab)
result_img = Image.fromarray((rgb_img * 255).astype(np.uint8))
#result_img.save(img_path.split("/")[-1].split(".")[0] + "_result.jpg")
sysdatetimestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
image_name = "image_result" + sysdatetimestamp + ".jpg"
result_img.save(image_name)
bucket_name="image_coloring_bucket"
uploaded_image_path = upload_image_to_bucket(bucket_name, image_name, image_name)
add_entry_to_json_file(json_file_path,uploaded_image_path)
return uploaded_image_path