-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfitness.py
132 lines (107 loc) · 4.4 KB
/
fitness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import tequila as tq
import numpy as np
import os, copy, random
import multiprocessing
def evaluate_circuit(process_id, encoder_obj, circuit_data_dict, metric_weight, tasks, results):
"""
This function evaluates a circuit and returns the fitness value
param:
process_id: A unique identifier for each process
encoder_obj (evolved_ccx object):
circuit_data_dict (dict):
metric_weight (dict):
tasks: multiprocessing queue to pass circuit_name
circuit_name: A unique identifier for each circuit
results: multiprocessing queue to pass results back
"""
print('[%s] evaluation routine starts' % process_id)
while True:
try:
circuit_name = tasks.get()
infidelity, _1rdm, _2rdm, depth, num_2_q_gate, num_1_q_gate = encoder_obj(circuit_data_dict[circuit_name])
fitness = metric_weight['infidelity'] * infidelity + metric_weight['depth'] * depth + metric_weight['num_2_q_gate'] * num_2_q_gate + \
metric_weight['num_1_q_gate'] * num_1_q_gate + metric_weight['2_rdm'] * _2rdm + metric_weight['1_rdm'] * _1rdm
results.put((circuit_name, fitness))
except:
print('[%s] evaluation routine quits' % process_id)
# Indicate finished
results.put(-1)
break
return
def parallelize_evaluation(encoder_obj, circuit_data_dict, metric_weight, num_processors):
"""
This fucntion creates parallel processes to run the circuit to evaluate the
objective value and returns the results
param:
encoder_obj (evolved_ccx object):
circuit_data_dict (dict):
num_processors (int): number of processors to be used for calculation
metric_weight (dict):
"""
# Define IPC manager
manager = multiprocessing.Manager()
# Define a list (queue) for tasks and computation results
tasks = manager.Queue()
results = manager.Queue()
processes = []
pool = multiprocessing.Pool(processes=num_processors)
for i in range(num_processors):
process_id = 'P%i' % i
# Create the process, and connect it to the worker function
new_process = multiprocessing.Process(target=evaluate_circuit,
args=(process_id, encoder_obj,
circuit_data_dict, metric_weight,
tasks, results))
# Add new process to the list of processes
processes.append(new_process)
# Start the process
new_process.start()
for single_task in list(circuit_data_dict.keys()):
tasks.put(single_task)
multiprocessing.Barrier(num_processors)
# Quit the worker processes by sending them -1
for i in range(num_processors):
tasks.put(-1)
combined_dict = {}
# Read calculation results
num_finished_processes = 0
while True:
# Read result
try:
circuit_name, new_fitness = results.get()
combined_dict[circuit_name] = new_fitness
except:
# Process has finished
num_finished_processes += 1
if num_finished_processes == num_processors:
break
return combined_dict
def order_based_on_fitness(dict_fitness):
"""
This function orders the dictionary as per the metric value
param: dict_fitness (dict) -> dictionary with keys as circuit identifiers
and values as fitness
e.g.:
input:
dict_metrics ->
output:
sorted_circuit_dict ->
sorted_fitness ->
"""
dict_fitness = dict(sorted(dict_fitness.items(), key=lambda item: item[1]))
sorted_fitness = list(dict_fitness.values())
return dict_fitness, sorted_fitness
def calculate_fitness(encoder_obj, circuit_data_dict, num_processors, metric_weight):
"""
This fucntion evaluates the fitness of all the circuits in the population by
using multiple processes in parallel
param:
encoder_obj (evolved_ccx object):
circuit_data_dict (dict):
num_processors (int): number of processors to be used for calculation
metric_weight (dict):
"""
fitness_dict = parallelize_evaluation(encoder_obj, circuit_data_dict,
metric_weight, num_processors)
sorted_circuit_data_dict, sorted_fitness = order_based_on_fitness(fitness_dict)
return sorted_circuit_data_dict, sorted_fitness