-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathswap.py
161 lines (124 loc) · 5 KB
/
swap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import re
import shutil
import numpy as np
import math
from collections import OrderedDict
import time
import tqdm
import warnings
import matplotlib.pyplot as plt
from PIL import Image
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import transforms
from options.test_options import TestOptions
from models.models import create_model
from data.VGGface2HQ import VGGFace2HQDataset
from utils.visualizer import Visualizer
from utils import utils
from utils.loss import get_loss_dict
from utils.plot import plot_batch
from utils.loss import IDLoss
from utils.IDExtract import IDExtractor
ImageNet_mean = [0.485, 0.456, 0.406]
ImageNet_std = [0.229, 0.224, 0.225]
Common_mean = [0.5, 0.5, 0.5]
Common_std = [0.5, 0.5, 0.5]
ImageNet_mean, ImageNet_std, Common_mean, Common_std = torch.Tensor(ImageNet_mean), torch.Tensor(
ImageNet_std), torch.Tensor(Common_mean), torch.Tensor(ImageNet_mean)
def logger(msg):
save_path = os.path.join(opt.output_path, opt.name)
file_name = os.path.join(save_path, 'swap_log.txt')
with open(file_name, 'a') as log_file:
log_file.write("{}\n".format(msg))
print(msg)
def read_img(pth, transform, opt):
img = []
for i in range(opt.num_to_swap):
img += [Image.open(os.path.join(pth, '{}.{}'.format(i, opt.input_format))).convert('RGB')]
img[-1] = transform(img[-1])
img = torch.stack(img)
return img
if __name__ == '__main__':
warnings.filterwarnings("ignore")
# args = create_argparser().parse_args()
opt = TestOptions().parse()
save_path = os.path.join(opt.output_path, opt.name)
if not os.path.exists(save_path):
os.mkdir(save_path)
if not os.path.exists(os.path.join(save_path, 'swap_opt.txt')):
file_name = os.path.join(save_path, 'swap_opt.txt')
with open(file_name, 'wt') as opt_file:
opt_file.write('------------ Options -------------\n')
for k, v in sorted(vars(opt).items()):
opt_file.write('%s: %s\n' % (str(k), str(v)))
opt_file.write('-------------- End ----------------\n')
file_name = os.path.join(save_path, 'swap_log.txt')
with open(file_name, 'a') as log_file:
log_file.write('===============swapping start=================\n')
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
print("Initiating model...")
model = create_model(opt)
print("Model initiated.")
# data transform
if opt.model == 'ILVR':
transform_mean, transform_std = Common_mean, Common_std
else:
transform_mean, transform_std = ImageNet_mean, ImageNet_std
norm = transforms.Normalize(transform_mean, transform_std)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((opt.image_size, opt.image_size)),
norm
])
denorm = transforms.Compose([
transforms.Normalize([0, 0, 0], 1 / transform_std),
transforms.Normalize(-transform_mean, [1, 1, 1])
])
print("swapping faces...")
count = 0
model.eval()
ArcExtract = IDExtractor(opt, model='Arcface')
CosExtract = IDExtractor(opt, model='Cosface')
IDloss = IDLoss()
Recloss = nn.L1Loss()
if opt.model == 'ILVR':
def swap(img_source, img_target, latent_ID):
return denorm(model.swap(img_source, img_target))
elif opt.model == 'CVAE': # CVAE and CVAE-GAN
def swap(img_source, img_target, latent_ID):
return model(img_target, latent_ID)
else:
def swap(img_source, img_target, latent_ID):
return model(img_source, img_target, latent_ID, latent_ID) # latent_ID_target is not used in eval()
model.load(opt.epoch_label)
img_source = read_img(opt.source_path, transform, opt)
img_target = read_img(opt.target_path, transform, opt)
with torch.no_grad():
img_source, img_target = img_source.to(device), img_target.to(device)
latent_ID = ArcExtract(img_source)
imgs = []
zero_img = (torch.zeros_like(img_source[0, ...]))
imgs.append(zero_img.cpu().numpy())
save_img_source = (denorm(img_source.cpu())).numpy()
save_img_target = (denorm(img_target.cpu())).numpy()
for r in range(opt.num_to_swap):
imgs.append(save_img_source[r, ...])
for i in range(opt.num_to_swap):
imgs.append(save_img_target[i, ...])
image_infer = img_target[i, ...].repeat(opt.num_to_swap, 1, 1, 1)
img_fake = swap(img_source, image_infer, latent_ID).cpu().numpy()
for j in range(opt.num_to_swap):
imgs.append(img_fake[j, ...])
logger('Face swapped successfully.')
imgs = np.stack(imgs, axis=0).transpose(0, 2, 3, 1)
plot_batch(imgs, os.path.join(save_path, '{}_{}.jpg'.format(opt.name, opt.swap_title)))
file_name = os.path.join(save_path, 'swap_log.txt')
with open(file_name, 'a') as log_file:
log_file.write('===============swapping end=================\n')