-
Notifications
You must be signed in to change notification settings - Fork 8
/
wiqa_preprocess.py
550 lines (492 loc) · 28.9 KB
/
wiqa_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" WIQA processors and helpers """
import logging
import jsonlines
import os
from tqdm import tqdm
import re
import copy
import json
import random
from transformers.data.processors.utils import DataProcessor, InputExample
logger = logging.getLogger(__name__)
class InputFeatures(object):
"""
A single set of features of data.
Args:
input_ids: Indices of input sequence tokens in the vocabulary.
attention_mask: Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
Usually ``1`` for tokens that are NOT MASKED, ``0`` for MASKED (padded) tokens.
token_type_ids: Segment token indices to indicate first and second portions of the inputs.
label: Label corresponding to the input
"""
def __init__(self, input_ids, attention_mask, token_type_ids, label, example_id):
self.input_ids = input_ids
self.attention_mask = attention_mask
self.token_type_ids = token_type_ids
self.label = label
self.example_id = example_id
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class TripletInputFeatures(object):
"""
A single set of features of triple data including three examples.
Args:
input_ids: Indices of input sequence tokens in the vocabulary.
attention_mask: Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
Usually ``1`` for tokens that are NOT MASKED, ``0`` for MASKED (padded) tokens.
token_type_ids: Segment token indices to indicate first and second portions of the inputs.
label: Label corresponding to the input
aug_one_input_ids: Indices of a paired augmented input tokens in the vocabulary.
aug_one_attention_mask: Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
Usually ``1`` for tokens that are NOT MASKED, ``0`` for MASKED (padded) tokens.
aug_one_token_type_ids: Segment token indices to indicate first and second portions of the inputs.
aug_two_input_ids: Indices of input sequence tokens in the vocabulary.
aug_two_attention_mask: Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
Usually ``1`` for tokens that are NOT MASKED, ``0`` for MASKED (padded) tokens.
aug_two_token_type_ids: Segment token indices to indicate first and second portions of the inputs.
label: Label corresponding to the input
example_id: the example
labels_one_hot: the label of the original example represented as a one-hot vector.
aug_labels_one_hot: the label of the augmented example represented as a one-hot vector.
paired: 1 if the triple is a symmetric example, otherwise 0.
triplet 1 if the triple is a transitive example, otherwise 0.
"""
def __init__(self, input_ids, attention_mask, token_type_ids,
aug_one_input_ids, aug_one_attention_mask, aug_one_token_type_ids,
aug_two_input_ids, aug_two_attention_mask, aug_two_token_type_ids,
label, example_id,
labels_one_hot, aug_labels_one_hot,
paired, triplet):
self.input_ids = input_ids
self.attention_mask = attention_mask
self.token_type_ids = token_type_ids
self.aug_one_input_ids = aug_one_input_ids
self.aug_one_attention_mask = aug_one_attention_mask
self.aug_one_token_type_ids = aug_one_token_type_ids
self.aug_two_input_ids = aug_two_input_ids
self.aug_two_attention_mask = aug_two_attention_mask
self.aug_two_token_type_ids = aug_two_token_type_ids
self.label = label
self.example_id = example_id
self.labels_one_hot = labels_one_hot
self.aug_labels_one_hot = aug_labels_one_hot
self.paired = paired
self.triplet = paired
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
def multi_qa_convert_examples_to_features(examples, tokenizer,
max_length=512,
task=None,
label_list=None,
output_mode=None,
pad_on_left=False,
pad_token=0,
pad_token_segment_id=0,
mask_padding_with_zero=True):
"""
Loads a data file into a list of `InputBatch`s
"""
if task is not None:
processor = multi_qa_processors[task]()
if label_list is None:
label_list = processor.get_labels()
logger.info("Using label list %s for task %s" % (label_list, task))
if output_mode is None:
output_mode = multi_qa_output_modes[task]
logger.info("Using output mode %s for task %s" %
(output_mode, task))
label_map = {label: i for i, label in enumerate(label_list)}
features = []
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
logger.info("Writing example %d" % (ex_index))
guid = example.guid
inputs = tokenizer.encode_plus(
example.text_a,
example.text_b,
add_special_tokens=True,
max_length=max_length
)
input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"]
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = max_length - len(input_ids)
if pad_on_left:
input_ids = ([pad_token] * padding_length) + input_ids
attention_mask = ([0 if mask_padding_with_zero else 1]
* padding_length) + attention_mask
token_type_ids = ([pad_token_segment_id] *
padding_length) + token_type_ids
else:
input_ids = input_ids + ([pad_token] * padding_length)
attention_mask = attention_mask + \
([0 if mask_padding_with_zero else 1] * padding_length)
token_type_ids = token_type_ids + \
([pad_token_segment_id] * padding_length)
assert len(input_ids) == max_length, "Error with input length {} vs {}".format(
len(input_ids), max_length)
assert len(attention_mask) == max_length, "Error with input length {} vs {}".format(
len(attention_mask), max_length)
assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format(
len(token_type_ids), max_length)
if output_mode == "classification":
label = label_map[example.label]
elif output_mode == "regression":
label = float(example.label)
else:
raise KeyError(output_mode)
if ex_index < 5:
logger.info("*** Example ***")
logger.info("guid: %s" % (example.guid))
logger.info("input_ids: %s" %
" ".join([str(x) for x in input_ids]))
logger.info("attention_mask: %s" %
" ".join([str(x) for x in attention_mask]))
logger.info("token_type_ids: %s" %
" ".join([str(x) for x in token_type_ids]))
logger.info("label: %s (id = %d)" % (example.label, label))
features.append(
InputFeatures(input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
label=label,
example_id=guid))
return features
def multi_qa_triplet_convert_examples_to_features_augmented_data(examples, tokenizer,
max_length=512,
task=None,
label_list=None,
output_mode=None,
pad_on_left=False,
pad_token=0,
pad_token_segment_id=0,
mask_padding_with_zero=True,
random_sample=False,
active_sample=False,
model=None,
no_augmentation=True,
random_augment_ratio=0.5):
"""
Loads a data file into a list of `InputBatch`s
"""
if task is not None:
processor = multi_qa_processors[task]()
if label_list is None:
label_list = processor.get_labels()
logger.info("Using label list %s for task %s" % (label_list, task))
if output_mode is None:
output_mode = multi_qa_output_modes[task]
logger.info("Using output mode %s for task %s" %
(output_mode, task))
label_map = {label: i for i, label in enumerate(label_list)}
# create a qid2examples table.
qid2examples = {example.guid: example for example in examples}
# Create consistent pairs list.
original_q_to_consistent_pairs = {}
for example in examples:
guid = example.guid
if "_symmetric_" in guid:
original_guid = guid.split("_symmetric_")[0]
original_q_to_consistent_pairs.setdefault(
original_guid, {"symmetric": [], "transitive": []})
original_q_to_consistent_pairs[original_guid]["symmetric"].append(
guid)
elif "_transit_" in guid:
original_guid = guid.split("@")[0]
original_q_to_consistent_pairs.setdefault(
original_guid, {"symmetric": [], "transitive": []})
original_q_to_consistent_pairs[original_guid]["transitive"].append(
guid)
else:
original_q_to_consistent_pairs.setdefault(
guid, {"symmetric": [], "transitive": []})
features = []
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
logger.info("Writing example %d" % (ex_index))
if "_symmetric_" in example.guid or "_transit_" in example.guid:
continue
# add original examples
of = _convert_example_to_features(example, tokenizer=tokenizer,
label_map=label_map,
max_length=max_length,
task=task,
label_list=label_list,
output_mode=output_mode,
pad_on_left=pad_on_left,
pad_token=pad_token,
pad_token_segment_id=pad_token_segment_id,
mask_padding_with_zero=mask_padding_with_zero)
if example.text_a is None:
continue
# load symmetric examples
symm_examples = [qid2examples[q_id]
for q_id in original_q_to_consistent_pairs[example.guid]["symmetric"]]
random.shuffle(symm_examples)
labels_one_hot = [
1 if i == of.label else 0 for i in range(len(label_list))]
# Convert symmetric examples into features.
for sym_i, sym_example in enumerate(symm_examples):
sym_example_feature = _convert_example_to_features(sym_example, tokenizer=tokenizer,
label_map=label_map,
max_length=max_length,
task=task,
label_list=label_list,
output_mode=output_mode,
pad_on_left=pad_on_left,
pad_token=pad_token,
pad_token_segment_id=pad_token_segment_id,
mask_padding_with_zero=mask_padding_with_zero)
aug_labels_one_hot = [
1 if i == sym_example_feature.label else 0 for i in range(len(label_list))]
# When multiple X_aug are generated from X, we shuffle the symmetric examples, we add (X, X_Aug^i) once, and add (X_aug^i, X) symmetric pairs for each X_Aug.
# symmetric examples are shuffled not to overly represent the first symmetric examples.
if sym_i == 0:
features.append(TripletInputFeatures(input_ids=of.input_ids, attention_mask=of.attention_mask, token_type_ids=of.token_type_ids,
aug_one_input_ids=sym_example_feature.input_ids,
aug_one_attention_mask=sym_example_feature.attention_mask,
aug_one_token_type_ids=sym_example_feature.token_type_ids,
aug_two_input_ids=sym_example_feature.input_ids,
aug_two_attention_mask=sym_example_feature.attention_mask,
aug_two_token_type_ids=sym_example_feature.token_type_ids,
label=of.label, example_id=sym_example_feature.example_id,
labels_one_hot=labels_one_hot,
aug_labels_one_hot=aug_labels_one_hot,
paired=1, triplet=0))
features.append(TripletInputFeatures(input_ids=sym_example_feature.input_ids, attention_mask=sym_example_feature.attention_mask,
token_type_ids=sym_example_feature.token_type_ids,
aug_one_input_ids=of.input_ids,
aug_one_attention_mask=of.attention_mask,
aug_one_token_type_ids=of.token_type_ids,
aug_two_input_ids=of.input_ids,
aug_two_attention_mask=of.attention_mask,
aug_two_token_type_ids=of.token_type_ids,
label=sym_example_feature.label, example_id=sym_example_feature.example_id,
labels_one_hot=aug_labels_one_hot,
aug_labels_one_hot=labels_one_hot,
paired=1, triplet=0))
if len(symm_examples) == 0:
# if there are no augmented results, add the same data into augmented data fields.
# add dummy input
features.append(TripletInputFeatures(input_ids=of.input_ids, attention_mask=of.attention_mask, token_type_ids=of.token_type_ids,
aug_one_input_ids=of.input_ids,
aug_one_attention_mask=of.attention_mask,
aug_one_token_type_ids=of.token_type_ids,
aug_two_input_ids=of.input_ids,
aug_two_attention_mask=of.attention_mask,
aug_two_token_type_ids=of.token_type_ids,
label=of.label, example_id=of.example_id,
labels_one_hot=labels_one_hot,
aug_labels_one_hot=labels_one_hot,
paired=0, triplet=0))
# load symmetric examples
transitive_examples = [qid2examples[q_id]
for q_id in original_q_to_consistent_pairs[example.guid]["transitive"]]
for transit_i, transitive_example in enumerate(transitive_examples):
x1_guid, x2_guid = transitive_example.guid.split(
"@")[0], transitive_example.guid.split("@")[1].split("_transit_")[0]
x2_example = qid2examples[x2_guid]
# Add transitive example
x2_example_feature = _convert_example_to_features(x2_example, tokenizer=tokenizer,
label_map=label_map,
max_length=max_length,
task=task,
label_list=label_list,
output_mode=output_mode,
pad_on_left=pad_on_left,
pad_token=pad_token,
pad_token_segment_id=pad_token_segment_id,
mask_padding_with_zero=mask_padding_with_zero)
x_trans_example_feature = _convert_example_to_features(transitive_example, tokenizer=tokenizer,
label_map=label_map,
max_length=max_length,
task=task,
label_list=label_list,
output_mode=output_mode,
pad_on_left=pad_on_left,
pad_token=pad_token,
pad_token_segment_id=pad_token_segment_id,
mask_padding_with_zero=mask_padding_with_zero)
# add original example to the task target once.
if transit_i == 0:
features.append(TripletInputFeatures(input_ids=of.input_ids,
attention_mask=of.attention_mask,
token_type_ids=of.token_type_ids,
aug_one_input_ids=x2_example_feature.input_ids,
aug_one_attention_mask=x2_example_feature.attention_mask,
aug_one_token_type_ids=x2_example_feature.token_type_ids,
aug_two_input_ids=x_trans_example_feature.input_ids,
aug_two_attention_mask=x_trans_example_feature.attention_mask,
aug_two_token_type_ids=x_trans_example_feature.token_type_ids,
label=of.label, example_id=x_trans_example_feature.example_id,
# make sure that the tiplet version never calculate irrelevant loss.
labels_one_hot=labels_one_hot, aug_labels_one_hot=labels_one_hot, \
paired=0, triplet=1))
# add transitive examples (X2, X1, X_trans)
features.append(TripletInputFeatures(input_ids=x2_example_feature.input_ids, attention_mask=x2_example_feature.attention_mask,
token_type_ids=x2_example_feature.token_type_ids,
aug_one_input_ids=of.input_ids,
aug_one_attention_mask=of.attention_mask,
aug_one_token_type_ids=of.token_type_ids,
aug_two_input_ids=x_trans_example_feature.input_ids,
aug_two_attention_mask=x_trans_example_feature.attention_mask,
aug_two_token_type_ids=x_trans_example_feature.token_type_ids,
label=x2_example_feature.label, example_id=x2_example_feature.example_id,
# make sure that the tiplet version never calculate irrelevant loss.
labels_one_hot=labels_one_hot, aug_labels_one_hot=labels_one_hot, \
paired=0, triplet=1))
# Add transitive example as an independent examples.
features.append(TripletInputFeatures(input_ids=x_trans_example_feature.input_ids, attention_mask=x_trans_example_feature.attention_mask,
token_type_ids=x_trans_example_feature.token_type_ids,
aug_one_input_ids=x_trans_example_feature.input_ids,
aug_one_attention_mask=x_trans_example_feature.attention_mask,
aug_one_token_type_ids=x_trans_example_feature.token_type_ids,
aug_two_input_ids=x_trans_example_feature.input_ids,
aug_two_attention_mask=x_trans_example_feature.attention_mask,
aug_two_token_type_ids=x_trans_example_feature.token_type_ids,
label=x_trans_example_feature.label, example_id=x_trans_example_feature.example_id,
labels_one_hot=labels_one_hot, aug_labels_one_hot=labels_one_hot, \
paired=0, triplet=0))
if ex_index < 5:
logger.info("*** Example ***")
logger.info("guid: %s" % (example.guid))
logger.info("input_ids: %s" %
" ".join([str(x) for x in of.input_ids]))
logger.info("attention_mask: %s" %
" ".join([str(x) for x in of.attention_mask]))
logger.info("token_type_ids: %s" %
" ".join([str(x) for x in of.token_type_ids]))
logger.info("label: %s " % (example.label))
return features
def _convert_example_to_features(example, tokenizer, label_map,
max_length=512,
task=None,
label_list=None,
output_mode=None,
pad_on_left=False,
pad_token=0,
pad_token_segment_id=0,
mask_padding_with_zero=True):
guid = example.guid
inputs = tokenizer.encode_plus(
example.text_a,
example.text_b,
add_special_tokens=True,
max_length=max_length
)
input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"]
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = max_length - len(input_ids)
if pad_on_left:
input_ids = ([pad_token] * padding_length) + input_ids
attention_mask = ([0 if mask_padding_with_zero else 1]
* padding_length) + attention_mask
token_type_ids = ([pad_token_segment_id] *
padding_length) + token_type_ids
else:
input_ids = input_ids + ([pad_token] * padding_length)
attention_mask = attention_mask + \
([0 if mask_padding_with_zero else 1] * padding_length)
token_type_ids = token_type_ids + \
([pad_token_segment_id] * padding_length)
assert len(input_ids) == max_length, "Error with input length {} vs {}".format(
len(input_ids), max_length)
assert len(attention_mask) == max_length, "Error with input length {} vs {}".format(
len(attention_mask), max_length)
assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format(
len(token_type_ids), max_length)
if output_mode == "classification":
label = label_map[example.label]
elif output_mode == "regression":
label = float(example.label)
else:
raise KeyError(output_mode)
return InputFeatures(input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
label=label,
example_id=guid)
class WIQAProcessor(DataProcessor):
"""Processor for the WIQA data set."""
def get_train_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} train".format(data_dir))
return self._create_examples(self._read_jsonl(os.path.join(data_dir, "train.jsonl")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
return self._create_examples(self._read_jsonl(os.path.join(data_dir, "dev.jsonl")), "dev")
def get_test_examples(self, data_dir):
logger.info("LOOKING AT {} test".format(data_dir))
return self._create_examples(self._read_jsonl(os.path.join(data_dir, "test.jsonl")), "test")
def get_labels(self):
return ["more", "less", "no_effect"]
def _read_jsonl(self, jsonl_file):
lines = []
print("loading examples from {0}".format(jsonl_file))
with jsonlines.open(jsonl_file) as reader:
for obj in reader:
lines.append(obj)
return lines
def _create_examples(self, lines, set_type, add_consistency=True):
"""Creates examples for the training and dev sets."""
examples = []
for (_, data_raw) in tqdm(enumerate(lines)):
question = data_raw["question"]["stem"]
para_steps = " ".join(data_raw["question"]['para_steps'])
answer_labels = data_raw["question"]["answer_label"]
example_id = data_raw['metadata']['ques_id']
examples.append(
InputExample(
guid=example_id,
text_a=question,
text_b=para_steps,
label=answer_labels))
return examples
multi_qa_tasks_num_labels = {
"wiqa": 3,
}
multi_qa_processors = {
"wiqa": WIQAProcessor,
}
multi_qa_output_modes = {
"wiqa": "classification",
}