-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1.0_data_manipulation.py
627 lines (553 loc) · 16.8 KB
/
1.0_data_manipulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
"""
We'll learn:
1. dropna by column, rows etc
2. fillna by default value/mean value
3. dataframe creation
4. groupby filter
5. concat, merging, join, apply() operations on data frames
"""
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
df = pd.DataFrame({'A':[1,2,np.nan],'B':[5,np.nan,np.nan],'C':[1,2,3]})
df.head()
"""
A B C
0 1.0 5.0 1
1 2.0 NaN 2
2 NaN NaN 3 """
df['States']="CA NV AZ".split()
df.set_index('States',inplace=True)
print(df)
"""
A B C
States
CA 1.0 5.0 1
NV 2.0 NaN 2
AZ NaN NaN 3 """
print("\nDropping any rows with a NaN value\n",'-'*35, sep='')
print(df.dropna(axis=0))
"""
Dropping any rows with a NaN value
-----------------------------------
A B C
States
CA 1.0 5.0 1 """
print("\nDropping any column with a NaN value\n",'-'*35, sep='')
print(df.dropna(axis=1))
""" Dropping any column with a NaN value
-----------------------------------
C
States
CA 1
NV 2
AZ 3 """
print("\nDropping a row with a minimum 2 NaN value using 'thresh' parameter\n",'-'*68, sep='')
print(df.dropna(axis=0, thresh=4))
"""
Dropping a row with a minimum 2 NaN value using 'thresh' parameter
--------------------------------------------------------------------
Empty DataFrame
Columns: [A, B, C]
Index: [] """
print("\nFilling values with a default value\n",'-'*35, sep='')
print(df.fillna(value='FILL VALUE'))
"""
Filling values with a default value
-----------------------------------
A B C
States
CA 1 5 1
NV 2 FILL VALUE 2
AZ FILL VALUE FILL VALUE 3 """
print("\nFilling values with a computed value (mean of column A here)\n",'-'*60, sep='')
print(df.fillna(value=df['A'].mean()))
""" Filling values with a computed value (mean of column A here)
------------------------------------------------------------
A B C
States
CA 1.0 5.0 1
NV 2.0 1.5 2
AZ 1.5 1.5 3 """
# Create dataframe
data = {'Company':['GOOG','GOOG','MSFT','MSFT','FB','FB'],
'Person':['Sam','Charlie','Amy','Vanessa','Carl','Sarah'],
'Sales':[200,120,340,124,243,350]}
df = pd.DataFrame(data)
df
"""
Company Person Sales
0 GOOG Sam 200
1 GOOG Charlie 120
2 MSFT Amy 340
3 MSFT Vanessa 124
4 FB Carl 243
5 FB Sarah 350 """
byComp = df.groupby('Company')
print("\nGrouping by 'Company' column and listing mean sales\n",'-'*55, sep='')
print(byComp.mean())
"""
Grouping by 'Company' column and listing mean sales
-------------------------------------------------------
Sales
Company
FB 296.5
GOOG 160.0
MSFT 232.0 """
print("\nGrouping by 'Company' column and listing sum of sales\n",'-'*55, sep='')
print(byComp.sum())
"""
Grouping by 'Company' column and listing sum of sales
-------------------------------------------------------
Sales
Company
FB 593
GOOG 320
MSFT 464 """
print("\nAll in one line of command (Stats for 'FB')\n",'-'*65, sep='')
print(pd.DataFrame(df.groupby('Company').describe().loc['FB']).transpose())
"""
All in one line of command (Stats for 'FB')
-----------------------------------------------------------------
Sales
count mean std min 25% 50% 75% max
FB 2.0 296.5 75.660426 243.0 269.75 296.5 323.25 350.0 """
(pd.DataFrame(df.groupby('Company').describe().loc['FB'])).transpose()
""" Sales
count mean std min 25% 50% 75% max
FB 2.0 296.5 75.660426 243.0 269.75 296.5 323.25 350.0 """
print("\nSame type of extraction with little different command\n",'-'*68, sep='')
print(df.groupby('Company').describe().loc[['GOOG', 'MSFT']])
""" Same type of extraction with little different command
--------------------------------------------------------------------
Sales
count mean std min 25% 50% 75% max
Company
GOOG 2.0 160.0 56.568542 120.0 140.0 160.0 180.0 200.0
MSFT 2.0 232.0 152.735065 124.0 178.0 232.0 286.0 340.0 """
# Merging two data frames
# Creating data frames
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']},
index=[0, 1, 2, 3])
df1
"""
A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3 """
df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
'B': ['B4', 'B5', 'B6', 'B7'],
'C': ['C4', 'C5', 'C6', 'C7'],
'D': ['D4', 'D5', 'D6', 'D7']},
index=[0, 1, 2, 3])
df2
""" A B C D
0 A4 B4 C4 D4
1 A5 B5 C5 D5
2 A6 B6 C6 D6
3 A7 B7 C7 D7
"""
df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],
'B': ['B8', 'B9', 'B10', 'B11'],
'C': ['C8', 'C9', 'C10', 'C11'],
'D': ['D8', 'D9', 'D10', 'D11']},
index=[8,9,10,11])
df3
"""
A B C D
8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11 """
print("\nThe DataFrame number 1\n",'-'*30, sep='')
print(df1)
""" The DataFrame number 1
------------------------------
A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3 """
print("\nThe DataFrame number 2\n",'-'*30, sep='')
print(df2)
""" The DataFrame number 2
------------------------------
A B C D
0 A4 B4 C4 D4
1 A5 B5 C5 D5
2 A6 B6 C6 D6
3 A7 B7 C7 D7 """
print("\nThe DataFrame number 3\n",'-'*30, sep='')
print(df3)
"""
The DataFrame number 3
------------------------------
A B C D
8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11 """
#concatenation
df_cat1 = pd.concat([df1,df2,df3], axis=0)
print("\nAfter concatenation along row\n",'-'*30, sep='')
print(df_cat1)
"""
A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
0 A4 B4 C4 D4
1 A5 B5 C5 D5
2 A6 B6 C6 D6
3 A7 B7 C7 D7
8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11 """
df_cat1.loc[2]
"""
A B C D
2 A2 B2 C2 D2
2 A6 B6 C6 D6 """
df_cat1.iloc[4]
"""
A A4
B B4
C C4
D D4
Name: 0, dtype: object """
df_cat2 = pd.concat([df1,df2,df3], axis=1)
print("\nAfter concatenation along column\n",'-'*60, sep='')
print(df_cat2)
""" After concatenation along column
------------------------------------------------------------
A B C D A B C D A B C D
0 A0 B0 C0 D0 A4 B4 C4 D4 NaN NaN NaN NaN
1 A1 B1 C1 D1 A5 B5 C5 D5 NaN NaN NaN NaN
2 A2 B2 C2 D2 A6 B6 C6 D6 NaN NaN NaN NaN
3 A3 B3 C3 D3 A7 B7 C7 D7 NaN NaN NaN NaN
8 NaN NaN NaN NaN NaN NaN NaN NaN A8 B8 C8 D8
9 NaN NaN NaN NaN NaN NaN NaN NaN A9 B9 C9 D9
10 NaN NaN NaN NaN NaN NaN NaN NaN A10 B10 C10 D10
11 NaN NaN NaN NaN NaN NaN NaN NaN A11 B11 C11 D11 """
df_cat2.fillna(value=0, inplace=True)
print("\nAfter filling missing values with zero\n",'-'*60, sep='')
print(df_cat2)
""" After filling missing values with zero
------------------------------------------------------------
A B C D A B C D A B C D
0 A0 B0 C0 D0 A4 B4 C4 D4 0 0 0 0
1 A1 B1 C1 D1 A5 B5 C5 D5 0 0 0 0
2 A2 B2 C2 D2 A6 B6 C6 D6 0 0 0 0
3 A3 B3 C3 D3 A7 B7 C7 D7 0 0 0 0
8 0 0 0 0 0 0 0 0 A8 B8 C8 D8
9 0 0 0 0 0 0 0 0 A9 B9 C9 D9
10 0 0 0 0 0 0 0 0 A10 B10 C10 D10
11 0 0 0 0 0 0 0 0 A11 B11 C11 D11 """
# merging by a common key
left = pd.DataFrame({'key': ['K0', 'K8', 'K2', 'K3'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']})
left
""" key A B
0 K0 A0 B0
1 K8 A1 B1
2 K2 A2 B2
3 K3 A3 B3 """
right
""" key C D
0 K0 C0 D0
1 K1 C1 D1
2 K2 C2 D2
3 K3 C3 D3 """
print("\nThe DataFrame 'left'\n",'-'*30, sep='')
print(left)
""" The DataFrame 'left'
------------------------------
key A B
0 K0 A0 B0
1 K8 A1 B1
2 K2 A2 B2
3 K3 A3 B3 """
print("\nThe DataFrame 'right'\n",'-'*30, sep='')
print(right)
""" The DataFrame 'right'
------------------------------
key C D
0 K0 C0 D0
1 K1 C1 D1
2 K2 C2 D2
3 K3 C3 D3 """
merge1= pd.merge(left,right,how='inner',on='key')
print("\nAfter simple merging with 'inner' method\n",'-'*50, sep='')
print(merge1)
""" After simple merging with 'inner' method
--------------------------------------------------
key A B C D
0 K0 A0 B0 C0 D0
1 K2 A2 B2 C2 D2
2 K3 A3 B3 C3 D3 """
left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
'key2': ['K0', 'K1', 'K0', 'K1'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
'key2': ['K0', 'K0', 'K0', 'K0'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']})
left
"""
key1 key2 A B
0 K0 K0 A0 B0
1 K0 K1 A1 B1
2 K1 K0 A2 B2
3 K2 K1 A3 B3 """
right
""" key1 key2 C D
0 K0 K0 C0 D0
1 K1 K0 C1 D1
2 K1 K0 C2 D2
3 K2 K0 C3 D3
"""
pd.merge(left, right, on=['key1', 'key2'])
""" key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K1 K0 A2 B2 C1 D1
2 K1 K0 A2 B2 C2 D2 """
pd.merge(left, right, how='left',on=['key1', 'key2'])
"""
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K0 K1 A1 B1 NaN NaN
2 K1 K0 A2 B2 C1 D1
3 K1 K0 A2 B2 C2 D2
4 K2 K1 A3 B3 NaN NaN """
pd.merge(left, right, how='right',on=['key1', 'key2'])
"""
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K1 K0 A2 B2 C1 D1
2 K1 K0 A2 B2 C2 D2
3 K2 K0 NaN NaN C3 D3 """
#join operators
left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
'B': ['B0', 'B1', 'B2']},
index=['K0', 'K1', 'K2'])
right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
'D': ['D0', 'D2', 'D3']},
index=['K0', 'K2', 'K3'])
left
""" A B
K0 A0 B0
K1 A1 B1
K2 A2 B2 """
right
""" C D
K0 C0 D0
K2 C2 D2
K3 C3 D3 """
left.join(right)
""" A B C D
K0 A0 B0 C0 D0
K1 A1 B1 NaN NaN
K2 A2 B2 C2 D2 """
left.join(right, how='outer')
""" A B C D
K0 A0 B0 C0 D0
K1 A1 B1 NaN NaN
K2 A2 B2 C2 D2
K3 NaN NaN C3 D3 """
# use of apply functions
# Define a function
def testfunc(x):
if (x> 500):
return (10*np.log10(x))
else:
return (x/10)
df = pd.DataFrame({'col1':[1,2,3,4,5,6,7,8,9,10],
'col2':[444,555,666,444,333,222,666,777,666,555],
'col3':'aaa bb c dd eeee fff gg h iii j'.split()})
df
""" col1 col2 col3
0 1 444 aaa
1 2 555 bb
2 3 666 c
3 4 444 dd
4 5 333 eeee
5 6 222 fff
6 7 666 gg
7 8 777 h
8 9 666 iii
9 10 555 j """
df['FuncApplied'] = df['col2'].apply(lambda x : np.log(x))
print(df)
""" col1 col2 col3 FuncApplied
0 1 444 aaa 6.095825
1 2 555 bb 6.318968
2 3 666 c 6.501290
3 4 444 dd 6.095825
4 5 333 eeee 5.808142
5 6 222 fff 5.402677
6 7 666 gg 6.501290
7 8 777 h 6.655440
8 9 666 iii 6.501290
9 10 555 j 6.318968 """
df['col3length']= df['col3'].apply(len)
print(df)
"""
col1 col2 col3 FuncApplied col3length
0 1 444 aaa 6.095825 3
1 2 555 bb 6.318968 2
2 3 666 c 6.501290 1
3 4 444 dd 6.095825 2
4 5 333 eeee 5.808142 4
5 6 222 fff 5.402677 3
6 7 666 gg 6.501290 2
7 8 777 h 6.655440 1
8 9 666 iii 6.501290 3
9 10 555 j 6.318968 1 """
df['FuncApplied'].apply(lambda x: np.sqrt(x))
""" 0 2.468972
1 2.513756
2 2.549763
3 2.468972
4 2.410009
5 2.324366
6 2.549763
7 2.579814
8 2.549763
9 2.513756
Name: FuncApplied, dtype: float64 """
print("\nSum of the column 'FuncApplied' is: ",df['FuncApplied'].sum())
# Sum of the column 'FuncApplied' is: 62.19971458619886
print("Mean of the column 'FuncApplied' is: ",df['FuncApplied'].mean())
# Mean of the column 'FuncApplied' is: 6.219971458619886
print("Std dev of the column 'FuncApplied' is: ",df['FuncApplied'].std())
# Std dev of the column 'FuncApplied' is: 0.3822522801574853
print("Min and max of the column 'FuncApplied' are: ",df['FuncApplied'].min(),"and",df['FuncApplied'].max())
# Min and max of the column 'FuncApplied' are: 5.402677381872279 and 6.655440350367647
### Deletion, sorting, list of column and row names
print("\nName of columns\n",'-'*20, sep='')
print(df.columns)
""" Name of columns
--------------------
Index(['col1', 'col2', 'col3', 'FuncApplied', 'col3length'], dtype='object') """
l = list(df.columns)
""" print("\nColumn names in a list of strings for later manipulation:",l)
Column names in a list of strings for later manipulation: ['col1', 'col2', 'col3', 'FuncApplied', 'col3length'] """
print("\nDeleting last column by 'del' command\n",'-'*50, sep='')
del df['col3length']
print(df)
df['col3length']= df['col3'].apply(len)
""" Deleting last column by 'del' command
--------------------------------------------------
col1 col2 col3 FuncApplied
0 1 444 aaa 6.095825
1 2 555 bb 6.318968
2 3 666 c 6.501290
3 4 444 dd 6.095825
4 5 333 eeee 5.808142
5 6 222 fff 5.402677
6 7 666 gg 6.501290
7 8 777 h 6.655440
8 9 666 iii 6.501290
9 10 555 j 6.318968 """
df.sort_values(by='col2') #inplace=False by default
""" col1 col2 col3 FuncApplied col3length
5 6 222 fff 5.402677 3
4 5 333 eeee 5.808142 4
0 1 444 aaa 6.095825 3
3 4 444 dd 6.095825 2
1 2 555 bb 6.318968 2
9 10 555 j 6.318968 1
2 3 666 c 6.501290 1
6 7 666 gg 6.501290 2
8 9 666 iii 6.501290 3
7 8 777 h 6.655440 1 """
df.sort_values(by='FuncApplied',ascending=False) #inplace=False by default
"""
col1 col2 col3 FuncApplied
7 8 777 h 6.655440
2 3 666 c 6.501290
6 7 666 gg 6.501290
8 9 666 iii 6.501290
1 2 555 bb 6.318968
9 10 555 j 6.318968
0 1 444 aaa 6.095825
3 4 444 dd 6.095825
4 5 333 eeee 5.808142
5 6 222 fff 5.402677 """
df = pd.DataFrame({'col1':[1,2,3,np.nan],
'col2':[None,555,666,444],
'col3':['abc','def','ghi','xyz']})
df.head()
"""
col1 col2 col3
0 1.0 NaN abc
1 2.0 555.0 def
2 3.0 666.0 ghi
3 NaN 444.0 xyz """
df.isnull()
""" col1 col2 col3
0 False True False
1 False False False
2 False False False
3 True False False """
df.fillna('FILL')
"""
col1 col2 col3
0 1.0 FILL abc
1 2.0 555.0 def
2 3.0 666.0 ghi
3 FILL 444.0 xyz """
df1
""" A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3 """
df2
""" A B C D
0 A4 B4 C4 D4
1 A5 B5 C5 D5
2 A6 B6 C6 D6
3 A7 B7 C7 D7 """
df3
""" A B C D
8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11 """
pd.merge(df1, df2, how='inner')
""" A B C D """
pd.merge(df1, df2, how='outer')
""" A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7 """
pd.merge(df1, df2, how='left')
""" A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3 """
pd.merge(df1, df2, how='right')
""" A B C D
0 A4 B4 C4 D4
1 A5 B5 C5 D5
2 A6 B6 C6 D6
3 A7 B7 C7 D7 """