-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
4927 lines (4815 loc) · 277 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width,initial-scale=1">
<title>Alan Zhao</title>
<link rel="shortcut icon" type="image/png" href="http://alanzzhao.com/favicon.png">
<link rel="shortcut icon" type="image/x-icon" href="http://alanzzhao.com/favicon.ico">
<link href="http://alanzzhao.com/feeds/all.atom.xml" type="application/atom+xml" rel="alternate" title="Alan Zhao Full Atom Feed" />
<link rel="stylesheet" href="http://alanzzhao.com/theme/css/screen.css" type="text/css" />
<link rel="stylesheet" href="http://alanzzhao.com/theme/css/pygments.css" type="text/css" />
<link rel="stylesheet" href="http://alanzzhao.com/theme/css/print.css" type="text/css" media="print" />
<meta name="generator" content="Pelican" />
<meta name="description" content="" />
<meta name="author" content="Alan Zhao" />
</head>
<body>
<header>
<nav>
<ul>
<li class="selected"><a href="http://alanzzhao.com/">Home</a></li>
<li><a href="http://alanzzhao.com/pages/about.html">About</a></li>
<li><a href="https://linkedin.com/in/alanzzhao">LinkedIn</a></li>
<li><a href="http://stackoverflow.com/users/4967110/azhao?tab=profile">StackOverflow</a></li>
<li><a href="http://alanzzhao.com/archives">Archives</a></li>
</ul>
</nav>
<div class="header_box">
<h1><a href="http://alanzzhao.com/">Alan Zhao</a></h1>
</div>
</header>
<div id="wrapper">
<div id="content"> <h4 class="date">Mar 02, 2018</h4>
<article class="post">
<h2 class="title">
<a href="http://alanzzhao.com/driven_data_competition.html" rel="bookmark" title="Permanent Link to "Driven Data Poverty Prediction Challenge"">Driven Data Poverty Prediction Challenge</a>
</h2>
<p>For the past month, I worked on a <a href="https://www.drivendata.org/competitions/50/worldbank-poverty-prediction/page/97/">Driven Data Competition - Predicting Poverty</a> alongside <a href="https://www.linkedin.com/in/shadiekhubba/">Shadie Khubba (Yale Statistics MA '17)</a>. This post is a detailing of our results (top 10% finish ~ 200 place of 2200 contestants), code, and learnings.</p>
<p>The code for our best models can be found on our <a href="https://github.com/AlanZZhao/driven_data">repo</a>.</p>
<h3>Motivation</h3>
<p>Shadie and I had met in a Statistical Case Studies class that involved weekly hack sessions of solving an amorphous problem (e.g. predict New Haven real estate prices from online data). We figured this Driven Data Competition was our attempt to prove our chops in the real world and get more familiar with the Python data stack as opposed to academia's R. Plus the bragging rights and possible $ if we won.</p>
<h3>The Problem</h3>
<p>According to the <a href="https://www.drivendata.org/competitions/50/worldbank-poverty-prediction/page/99/">competition website</a>, predicting poverty from survey data is a hard problem. We were given survey response data from 3 anonymized countries (A, B & C), at both the household and individual level. Predictions were done at the household level, with each household having a 1:n relationship with individuals.</p>
<p>Scoring was done with a mean log loss of the three, with our predictions being offered as probabilities between 0-1 for each household being classified as poor. A baseline naive score with uniform 0.5 probability would score 0.69.</p>
<h3>Early Learnings</h3>
<p>We spent our first two weeks using a traditional approach; conducting exploratory data analysis and throwing some standard classifiers at the data. EDA did not prove particularly useful since each column had its data scrambled and normalized. However, two challenging issues emerged from looking at the dataset. First, the classes were imbalanced in countries B and C; the ratio of poor households to non-poor was 1:12. Second, the majority( >90%) of predictors were categorical; with several having large sets of up to 80 possible values.</p>
<p>We initially began throwing traditional methods at the problem: SVM, logistic regression, boosting and building off the random forest model benchmark (scored at .55).</p>
<p>Organizationally, we started with a GitHub repo that quickly turned into a mess. While we did organize our work with all data files/submission files saved, it quickly grew apparent that restructuring our code was inefficient. Shadie and I were working in our separate .py files, and often rewriting or re-running models locally ourselves. We didn't spend enough time planning a project structure early on; later I found out about the <a href="https://drivendata.github.io/cookiecutter-data-science/#cookiecutter-data-science">cookie-cutter data science project</a>, but it was too late to implement a new project structure.</p>
<h3>Inherent Challenges</h3>
<p>We solved some minor problems with imbalanced classes (resampling) and missing values (imputation) but we really struggled with two major problems.</p>
<h4>Categorical Variables</h4>
<p>We needed a way to convert the categorical variables into numerical data such that scikit learn could actually use it as an input space. We started with one hot encoding (turning each possible value of a categorical predictor into a new 0/1 predictor), but realized it was blowing up dimensionality of the feature space, so much so that using only the continuous variables for prediction (a small fraction of the original feature space) yielded much better results (using the continuous variables and logistic regression brought us to a competitive score of 0.27, at a time when the scoreboard leaders were in the neighborhood of 0.15). Our 50 categorical variables were turning into 500 binary variables and the curse of dimensionality was taking effect: additional useless variables being added in and getting some assignment of weight. We spent time early on trying to find the right heuristics to reduce the dimensionality while not discarding potentially useful features.</p>
<h4>Utilizing Individual Data</h4>
<p>We began by using household data. Incorporating summary statistics (e.g. mean, range max, min) of predictions on individual data actually worsened prediction performance. Our hypothesis here is that individual predictions were offering a noisier version of what the household data already provided. Posts on the forum suggested that this was a common hurdle for the entire competitor field - many people were getting .17-.18 results by only using the household data.</p>
<h3>CatBoost</h3>
<p><img alt="CatBoost representation" src="https://avatars.mds.yandex.net/get-bunker/120922/58e11eb206a498bbea44041cb3d7e5e2e181c6ae/orig"></p>
<p>We made a lucky breakthrough into the top 10% with a discovery of <a href="https://tech.yandex.com/catboost/">CatBoost</a>. CatBoost is a GBM variant made by Russian search giant Yandex, and its killer feature is native support for categorical variables (hence the name categorical boosting = catboost). CatBoost is able to use statistical methods to selectively keep the most predictive values in each categorical column; saving much tedious cleaning on our end.</p>
<p>Our first submission here brought us in the top 8% of submissions, showing that boosting is the way to go. This dramatic improvement came solely from avoiding the curse of dimensionality and implementing a boosting algorithm (that is designed to require very little tuning)!</p>
<p>However, after incorporating Catboost we hit a plateau and were only able to eke out minor gains thereafter. We tried numerous feature engineering approaches for the individual data but were stumped. Our group ended up in the 200th place of over 2200 competitors though, so not a bad showing for our first time out.</p>
<h3>Lessons Learned</h3>
<p>We learned a lot of neat technical tricks and tools (cookiecutter, catboost, scikit learn goodies like pipeline), but the real learnings are far more generally applicable.</p>
<h4>Try Boosting First</h4>
<p>We spent a lot of time tossing models that didn't pan out before we arrived at the correct one. From the post-competition discussion boards, we realized that many kaggle-vets immediately tried industry standard models (XGBoost, LightBoost, CatBoost) as their first model as a matter of habit. Readings online support the idea that boosting is the go-to black box solution.</p>
<h4>Feature Engineering is Everything</h4>
<p>We couldn't get beyond our initial gain from using CatBoost by adding in individual data, though we tried many different approaches ranging from feature selection based off importance, predictions from individual data as features and more.</p>
<p>The big question was how to build features from the individual data. One of the top 3 finishers posted his feature set, and it turned out to be ridiculously simple: counting positive and negative values, the id of individuals (suggesting some ordering to household), sum of continuous values, and a count of unique categorical values.</p>
<h4>Build a Testing Harness</h4>
<p>A major challenge here was that we underestimated the limitations imposed by the two submissions per day. We were foolish and started off building models and then submitting to validate results. Only after many unfortunate submissions did we build out a suite of validation tools to rigorously test locally first. By the end of the first two weeks, we were running 3-fold cross validation, and eyeballing confusion matrices and predicted probability distributions. We started by treating the competition's submissions as a last validation step, not as a first one.</p>
<h3>Next Time & Application</h3>
<p>I'm optimistic that the next time we partake in a kaggle-style competition, we could place much higher if we had course corrected on these three things. Instead of scrambling to build out a testing harness with two weeks left, or furiously creating additional features in the final days, we could have comfortably spent 3 weeks feature engineering. The competition often felt like the xkcd comic below, but if we did it again, one would hope the pile of linear algebra would be less messy, and the results easier to check.</p>
<p><img src="https://imgs.xkcd.com/comics/machine_learning_2x.png" alt="Summary XKCD comic" width="300"/></p>
<p>A final takeaway for both of us is that real data science life is not a kaggle-style competition. Online competitions push for a best solution; day-to-day work demands the "good enough" solution.</p>
<p>I'd imagine that the World Bank, which sponsored this competition, would have been equally happy to know that household data and an out of the box GBM produce a solution within 0.04 of the winning one. Putting together the $15,000 prize and paying DrivenData to run the competition shows they likely didn't know this from the get go. Clearly, some quick wins still to be found in social sector data challenges.</p>
<div class="clear"></div>
<div class="info">
<a href="http://alanzzhao.com/driven_data_competition.html">posted at 09:20</a>
· <a href="http://alanzzhao.com/category/blog.html" rel="tag">Blog</a>
·
<a href="http://alanzzhao.com/tag/python.html" class="tags">python</a>
<a href="http://alanzzhao.com/tag/learning.html" class="tags">learning</a>
<a href="http://alanzzhao.com/tag/data-science.html" class="tags">data science</a>
</div>
</article> <h4 class="date">Jan 16, 2018</h4>
<article class="post">
<h2 class="title">
<a href="http://alanzzhao.com/rugby_optimization.html" rel="bookmark" title="Permanent Link to "Optimal Rugby Team Selection"">Optimal Rugby Team Selection</a>
</h2>
<p>After taking a couple optimization classes at the School of Management and School of Statistics, I've been thinking about problems from an optimization lens. One such problem I spend too much time on is picking lineups for my grad rugby team. The night before a game, I confer with the other leaders of the squad to determine what the strongest line up will be. We discuss various groups, mixing players in different positions and the talk usually takes an hour.</p>
<p>The decision is based off player ability and practice attendance, and rooted in our qualitative feelings. I began thinking of how the problem could be cast quantitatively and if so, if I could build a decision making tool. </p>
<p>An hour of research (ie google) showed that this is actually a long solved problem in computer science: the assignment problem. Simply put, it is the task of minimizing the cost of assigning n workers to m jobs, where each worker i for every job j has a cost(i,j). Turns out it is an common industry application. For example, how can Uber minimize total customer wait time given a set of drivers and available jobs?</p>
<p>Many solution methods for the assignment problem are out there, but the simplest is the <a href="https://en.wikipedia.org/wiki/Hungarian_algorithm">Hungarian Algorithm</a>, and there is a one line <a href="https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html">SciPy implementation</a> already. As always, amazed by how impressive the Python open source data stack is.</p>
<p>My rugby problem restated is thus <em>maximizing the total team performance through assignment of n players to m=15 positions</em>, where each player has a positional score for position. This knowledge is largely implicit in our captains' discussion, so not too much more work to put it into a csv file. This file is the performance matrix: each player can play a subset at of the positions at varying levels (0 - not at all, 3 - basic knowledge and practice, 5 - years of varsity level positional experience). </p>
<p><img alt="alt text" src="http://alanzzhao.com/images/RugbyCSV.png" title="An example sheet from Yale Grad Rugby"></p>
<p>The sum of values for the selected players is the total team performance metric, and maximizing this is the objective function. </p>
<h4>Code</h4>
<p>I wrote an object that stores the players and positions and automates the initial selection as well as reselection for any potential injuries. It keeps track of the team's total performance score as well.</p>
<div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="kn">from</span> <span class="nn">scipy.optimize</span> <span class="kn">import</span> <span class="n">linear_sum_assignment</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="kn">as</span> <span class="nn">pd</span>
<span class="k">class</span> <span class="nc">Selections</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
<span class="sd">"""An object to optimally select a starting team given a performance csv."""</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">):</span>
<span class="sd">"""Read in data, csv needs to be to player-column and row-position. No need</span>
<span class="sd"> for duplication"""</span>
<span class="c1"># fills all empty elements with 0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">data</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">index_col</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">fillna</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_duplicate_cols</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">data</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">transpose</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">orig_cost</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">values</span><span class="o">*-</span><span class="mi">1</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cost</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">orig_cost</span>
<span class="c1"># retrieve list of players and positions</span>
<span class="bp">self</span><span class="o">.</span><span class="n">positions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">index</span><span class="o">.</span><span class="n">tolist</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">players</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">columns</span><span class="o">.</span><span class="n">tolist</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">starting_lineup</span> <span class="o">=</span> <span class="p">{}</span>
<span class="bp">self</span><span class="o">.</span><span class="n">starting_score</span> <span class="o">=</span> <span class="mi">0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">current_lineup</span> <span class="o">=</span> <span class="p">{}</span>
<span class="bp">self</span><span class="o">.</span><span class="n">current_score</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">def</span> <span class="nf">_duplicate_cols</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">names</span><span class="o">=</span><span class="p">[</span><span class="s1">'Prop'</span><span class="p">,</span> <span class="s1">'Lock'</span><span class="p">,</span> <span class="s1">'Flanker'</span><span class="p">,</span> <span class="s1">'Center'</span><span class="p">,</span> <span class="s1">'Wing'</span><span class="p">]):</span>
<span class="sd">"""Duplicate rows where there exist two spots on the field"""</span>
<span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">names</span><span class="p">:</span>
<span class="n">second_position</span> <span class="o">=</span> <span class="n">name</span><span class="o">+</span><span class="s1">'2'</span>
<span class="bp">self</span><span class="o">.</span><span class="n">data</span><span class="p">[</span><span class="n">second_position</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">data</span><span class="p">[</span><span class="n">name</span><span class="p">]</span>
<span class="c1"># alphabetize columns</span>
<span class="bp">self</span><span class="o">.</span><span class="n">data</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">reindex_axis</span><span class="p">(</span><span class="nb">sorted</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">columns</span><span class="p">),</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="k">return</span>
<span class="k">def</span> <span class="nf">_create_lineup</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">rows</span><span class="p">,</span> <span class="n">cols</span><span class="p">):</span>
<span class="sd">"""Returns a dictionary of positions keys and player values"""</span>
<span class="n">selections</span> <span class="o">=</span> <span class="p">{}</span>
<span class="k">for</span> <span class="n">row</span><span class="p">,</span> <span class="n">col</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">rows</span><span class="p">,</span> <span class="n">cols</span><span class="p">):</span>
<span class="n">position</span><span class="p">,</span> <span class="n">player</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">positions</span><span class="p">[</span><span class="n">row</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">players</span><span class="p">[</span><span class="n">col</span><span class="p">]</span>
<span class="n">selections</span><span class="p">[</span><span class="n">position</span><span class="p">]</span> <span class="o">=</span> <span class="n">player</span>
<span class="k">return</span> <span class="n">selections</span>
<span class="k">def</span> <span class="nf">pick_lineup</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">starting</span><span class="o">=</span><span class="bp">True</span><span class="p">):</span>
<span class="sd">"""Solves lineup selection with hungarian algorithm"""</span>
<span class="k">if</span> <span class="n">starting</span> <span class="ow">is</span> <span class="bp">True</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="n">rows</span><span class="p">,</span> <span class="n">cols</span> <span class="o">=</span> <span class="n">linear_sum_assignment</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">orig_cost</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">starting_score</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_team_score</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">orig_cost</span><span class="p">,</span> <span class="n">rows</span><span class="p">,</span> <span class="n">cols</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">starting_lineup</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_create_lineup</span><span class="p">(</span><span class="n">rows</span><span class="p">,</span> <span class="n">cols</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">starting_lineup</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">rows</span><span class="p">,</span> <span class="n">cols</span> <span class="o">=</span> <span class="n">linear_sum_assignment</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">cost</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">current_score</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_team_score</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">cost</span><span class="p">,</span> <span class="n">rows</span><span class="p">,</span> <span class="n">cols</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">current_lineup</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_create_lineup</span><span class="p">(</span><span class="n">rows</span><span class="p">,</span> <span class="n">cols</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">current_lineup</span>
<span class="k">def</span> <span class="nf">substitute_selection</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">player_list</span><span class="p">):</span>
<span class="sd">"""Remove a given player and reruns the selection from remaining player</span>
<span class="sd"> pool"""</span>
<span class="k">for</span> <span class="n">player</span> <span class="ow">in</span> <span class="n">player_list</span><span class="p">:</span>
<span class="n">player_index</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">players</span><span class="o">.</span><span class="n">index</span><span class="p">(</span><span class="n">player</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">players</span><span class="o">.</span><span class="n">remove</span><span class="p">(</span><span class="n">player</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cost</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">delete</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">cost</span><span class="p">,</span> <span class="n">player_index</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">current_lineup</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">pick_lineup</span><span class="p">(</span><span class="n">starting</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="k">return</span> <span class="n">current_lineup</span>
<span class="k">def</span> <span class="nf">reset</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""Reset the selection object to its original state"""</span>
<span class="bp">self</span><span class="o">.</span><span class="n">orig_cost</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">values</span><span class="o">*-</span><span class="mi">1</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cost</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">orig_cost</span>
<span class="c1"># retrieve list of players and positions</span>
<span class="bp">self</span><span class="o">.</span><span class="n">positions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">index</span><span class="o">.</span><span class="n">tolist</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">players</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">columns</span><span class="o">.</span><span class="n">tolist</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">starting_lineup</span> <span class="o">=</span> <span class="p">{}</span>
<span class="bp">self</span><span class="o">.</span><span class="n">reserve_players</span> <span class="o">=</span> <span class="p">{}</span>
<span class="k">def</span> <span class="nf">_team_score</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">cost</span><span class="p">,</span> <span class="n">rows</span><span class="p">,</span> <span class="n">cols</span><span class="p">):</span>
<span class="sd">"""Display the team total score"""</span>
<span class="k">return</span> <span class="n">cost</span><span class="p">[</span><span class="n">rows</span><span class="p">,</span> <span class="n">cols</span><span class="p">]</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span> <span class="o">*</span> <span class="o">-</span> <span class="mi">1</span>
</pre></div>
<h4>Example Use</h4>
<style type="text/css">/*!
*
* IPython notebook
*
*/
/* CSS font colors for translated ANSI colors. */
.ansibold {
font-weight: bold;
}
/* use dark versions for foreground, to improve visibility */
.ansiblack {
color: black;
}
.ansired {
color: darkred;
}
.ansigreen {
color: darkgreen;
}
.ansiyellow {
color: #c4a000;
}
.ansiblue {
color: darkblue;
}
.ansipurple {
color: darkviolet;
}
.ansicyan {
color: steelblue;
}
.ansigray {
color: gray;
}
/* and light for background, for the same reason */
.ansibgblack {
background-color: black;
}
.ansibgred {
background-color: red;
}
.ansibggreen {
background-color: green;
}
.ansibgyellow {
background-color: yellow;
}
.ansibgblue {
background-color: blue;
}
.ansibgpurple {
background-color: magenta;
}
.ansibgcyan {
background-color: cyan;
}
.ansibggray {
background-color: gray;
}
div.cell {
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: vertical;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: vertical;
-moz-box-align: stretch;
display: box;
box-orient: vertical;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: column;
align-items: stretch;
border-radius: 2px;
box-sizing: border-box;
-moz-box-sizing: border-box;
-webkit-box-sizing: border-box;
border-width: 1px;
border-style: solid;
border-color: transparent;
width: 100%;
padding: 5px;
/* This acts as a spacer between cells, that is outside the border */
margin: 0px;
outline: none;
border-left-width: 1px;
padding-left: 5px;
background: linear-gradient(to right, transparent -40px, transparent 1px, transparent 1px, transparent 100%);
}
div.cell.jupyter-soft-selected {
border-left-color: #90CAF9;
border-left-color: #E3F2FD;
border-left-width: 1px;
padding-left: 5px;
border-right-color: #E3F2FD;
border-right-width: 1px;
background: #E3F2FD;
}
@media print {
div.cell.jupyter-soft-selected {
border-color: transparent;
}
}
div.cell.selected {
border-color: #ababab;
border-left-width: 0px;
padding-left: 6px;
background: linear-gradient(to right, #42A5F5 -40px, #42A5F5 5px, transparent 5px, transparent 100%);
}
@media print {
div.cell.selected {
border-color: transparent;
}
}
div.cell.selected.jupyter-soft-selected {
border-left-width: 0;
padding-left: 6px;
background: linear-gradient(to right, #42A5F5 -40px, #42A5F5 7px, #E3F2FD 7px, #E3F2FD 100%);
}
.edit_mode div.cell.selected {
border-color: #66BB6A;
border-left-width: 0px;
padding-left: 6px;
background: linear-gradient(to right, #66BB6A -40px, #66BB6A 5px, transparent 5px, transparent 100%);
}
@media print {
.edit_mode div.cell.selected {
border-color: transparent;
}
}
.prompt {
/* This needs to be wide enough for 3 digit prompt numbers: In[100]: */
min-width: 14ex;
/* This padding is tuned to match the padding on the CodeMirror editor. */
padding: 0.4em;
margin: 0px;
font-family: monospace;
text-align: right;
/* This has to match that of the the CodeMirror class line-height below */
line-height: 1.21429em;
/* Don't highlight prompt number selection */
-webkit-touch-callout: none;
-webkit-user-select: none;
-khtml-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
/* Use default cursor */
cursor: default;
}
@media (max-width: 540px) {
.prompt {
text-align: left;
}
}
div.inner_cell {
min-width: 0;
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: vertical;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: vertical;
-moz-box-align: stretch;
display: box;
box-orient: vertical;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: column;
align-items: stretch;
/* Old browsers */
-webkit-box-flex: 1;
-moz-box-flex: 1;
box-flex: 1;
/* Modern browsers */
flex: 1;
}
/* input_area and input_prompt must match in top border and margin for alignment */
div.input_area {
border: 1px solid #cfcfcf;
border-radius: 2px;
background: #f7f7f7;
line-height: 1.21429em;
}
/* This is needed so that empty prompt areas can collapse to zero height when there
is no content in the output_subarea and the prompt. The main purpose of this is
to make sure that empty JavaScript output_subareas have no height. */
div.prompt:empty {
padding-top: 0;
padding-bottom: 0;
}
div.unrecognized_cell {
padding: 5px 5px 5px 0px;
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: horizontal;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: horizontal;
-moz-box-align: stretch;
display: box;
box-orient: horizontal;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: row;
align-items: stretch;
}
div.unrecognized_cell .inner_cell {
border-radius: 2px;
padding: 5px;
font-weight: bold;
color: red;
border: 1px solid #cfcfcf;
background: #eaeaea;
}
div.unrecognized_cell .inner_cell a {
color: inherit;
text-decoration: none;
}
div.unrecognized_cell .inner_cell a:hover {
color: inherit;
text-decoration: none;
}
@media (max-width: 540px) {
div.unrecognized_cell > div.prompt {
display: none;
}
}
div.code_cell {
/* avoid page breaking on code cells when printing */
}
@media print {
div.code_cell {
page-break-inside: avoid;
}
}
/* any special styling for code cells that are currently running goes here */
div.input {
page-break-inside: avoid;
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: horizontal;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: horizontal;
-moz-box-align: stretch;
display: box;
box-orient: horizontal;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: row;
align-items: stretch;
}
@media (max-width: 540px) {
div.input {
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: vertical;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: vertical;
-moz-box-align: stretch;
display: box;
box-orient: vertical;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: column;
align-items: stretch;
}
}
/* input_area and input_prompt must match in top border and margin for alignment */
div.input_prompt {
color: #303F9F;
border-top: 1px solid transparent;
}
div.input_area > div.highlight {
margin: 0.4em;
border: none;
padding: 0px;
background-color: transparent;
}
div.input_area > div.highlight > pre {
margin: 0px;
border: none;
padding: 0px;
background-color: transparent;
}
/* The following gets added to the <head> if it is detected that the user has a
* monospace font with inconsistent normal/bold/italic height. See
* notebookmain.js. Such fonts will have keywords vertically offset with
* respect to the rest of the text. The user should select a better font.
* See: https://github.com/ipython/ipython/issues/1503
*
* .CodeMirror span {
* vertical-align: bottom;
* }
*/
.CodeMirror {
line-height: 1.21429em;
/* Changed from 1em to our global default */
font-size: 14px;
height: auto;
/* Changed to auto to autogrow */
background: none;
/* Changed from white to allow our bg to show through */
}
.CodeMirror-scroll {
/* The CodeMirror docs are a bit fuzzy on if overflow-y should be hidden or visible.*/
/* We have found that if it is visible, vertical scrollbars appear with font size changes.*/
overflow-y: hidden;
overflow-x: auto;
}
.CodeMirror-lines {
/* In CM2, this used to be 0.4em, but in CM3 it went to 4px. We need the em value because */
/* we have set a different line-height and want this to scale with that. */
padding: 0.4em;
}
.CodeMirror-linenumber {
padding: 0 8px 0 4px;
}
.CodeMirror-gutters {
border-bottom-left-radius: 2px;
border-top-left-radius: 2px;
}
.CodeMirror pre {
/* In CM3 this went to 4px from 0 in CM2. We need the 0 value because of how we size */
/* .CodeMirror-lines */
padding: 0;
border: 0;
border-radius: 0;
}
/*
Original style from softwaremaniacs.org (c) Ivan Sagalaev <Maniac@SoftwareManiacs.Org>
Adapted from GitHub theme
*/
.highlight-base {
color: #000;
}
.highlight-variable {
color: #000;
}
.highlight-variable-2 {
color: #1a1a1a;
}
.highlight-variable-3 {
color: #333333;
}
.highlight-string {
color: #BA2121;
}
.highlight-comment {
color: #408080;
font-style: italic;
}
.highlight-number {
color: #080;
}
.highlight-atom {
color: #88F;
}
.highlight-keyword {
color: #008000;
font-weight: bold;
}
.highlight-builtin {
color: #008000;
}
.highlight-error {
color: #f00;
}
.highlight-operator {
color: #AA22FF;
font-weight: bold;
}
.highlight-meta {
color: #AA22FF;
}
/* previously not defined, copying from default codemirror */
.highlight-def {
color: #00f;
}
.highlight-string-2 {
color: #f50;
}
.highlight-qualifier {
color: #555;
}
.highlight-bracket {
color: #997;
}
.highlight-tag {
color: #170;
}
.highlight-attribute {
color: #00c;
}
.highlight-header {
color: blue;
}
.highlight-quote {
color: #090;
}
.highlight-link {
color: #00c;
}
/* apply the same style to codemirror */
.cm-s-ipython span.cm-keyword {
color: #008000;
font-weight: bold;
}
.cm-s-ipython span.cm-atom {
color: #88F;
}
.cm-s-ipython span.cm-number {
color: #080;
}
.cm-s-ipython span.cm-def {
color: #00f;
}
.cm-s-ipython span.cm-variable {
color: #000;
}
.cm-s-ipython span.cm-operator {
color: #AA22FF;
font-weight: bold;
}
.cm-s-ipython span.cm-variable-2 {
color: #1a1a1a;
}
.cm-s-ipython span.cm-variable-3 {
color: #333333;
}
.cm-s-ipython span.cm-comment {
color: #408080;
font-style: italic;
}
.cm-s-ipython span.cm-string {
color: #BA2121;
}
.cm-s-ipython span.cm-string-2 {
color: #f50;
}
.cm-s-ipython span.cm-meta {
color: #AA22FF;
}
.cm-s-ipython span.cm-qualifier {
color: #555;
}
.cm-s-ipython span.cm-builtin {
color: #008000;
}
.cm-s-ipython span.cm-bracket {
color: #997;
}
.cm-s-ipython span.cm-tag {
color: #170;
}
.cm-s-ipython span.cm-attribute {
color: #00c;
}
.cm-s-ipython span.cm-header {
color: blue;
}
.cm-s-ipython span.cm-quote {
color: #090;
}
.cm-s-ipython span.cm-link {
color: #00c;
}
.cm-s-ipython span.cm-error {
color: #f00;
}
.cm-s-ipython span.cm-tab {
background: url();
background-position: right;
background-repeat: no-repeat;
}
div.output_wrapper {
/* this position must be relative to enable descendents to be absolute within it */
position: relative;
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: vertical;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: vertical;
-moz-box-align: stretch;
display: box;
box-orient: vertical;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: column;
align-items: stretch;
z-index: 1;
}
/* class for the output area when it should be height-limited */
div.output_scroll {
/* ideally, this would be max-height, but FF barfs all over that */
height: 24em;
/* FF needs this *and the wrapper* to specify full width, or it will shrinkwrap */
width: 100%;
overflow: auto;
border-radius: 2px;
-webkit-box-shadow: inset 0 2px 8px rgba(0, 0, 0, 0.8);
box-shadow: inset 0 2px 8px rgba(0, 0, 0, 0.8);
display: block;
}
/* output div while it is collapsed */
div.output_collapsed {
margin: 0px;
padding: 0px;
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: vertical;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: vertical;
-moz-box-align: stretch;
display: box;
box-orient: vertical;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: column;
align-items: stretch;
}
div.out_prompt_overlay {
height: 100%;
padding: 0px 0.4em;
position: absolute;
border-radius: 2px;
}
div.out_prompt_overlay:hover {
/* use inner shadow to get border that is computed the same on WebKit/FF */
-webkit-box-shadow: inset 0 0 1px #000;
box-shadow: inset 0 0 1px #000;
background: rgba(240, 240, 240, 0.5);
}
div.output_prompt {
color: #D84315;
}
/* This class is the outer container of all output sections. */
div.output_area {
padding: 0px;
page-break-inside: avoid;
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: horizontal;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: horizontal;
-moz-box-align: stretch;
display: box;
box-orient: horizontal;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: row;
align-items: stretch;
}
div.output_area .MathJax_Display {
text-align: left !important;
}
div.output_area
div.output_area
div.output_area img,
div.output_area svg {
max-width: 100%;
height: auto;
}
div.output_area img.unconfined,
div.output_area svg.unconfined {
max-width: none;
}
/* This is needed to protect the pre formating from global settings such
as that of bootstrap */
.output {
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: vertical;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: vertical;
-moz-box-align: stretch;
display: box;
box-orient: vertical;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: column;
align-items: stretch;
}
@media (max-width: 540px) {
div.output_area {
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: vertical;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: vertical;
-moz-box-align: stretch;
display: box;
box-orient: vertical;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: column;
align-items: stretch;
}
}
div.output_area pre {
margin: 0;
padding: 0;
border: 0;
vertical-align: baseline;
color: black;
background-color: transparent;
border-radius: 0;
}
/* This class is for the output subarea inside the output_area and after
the prompt div. */
div.output_subarea {
overflow-x: auto;
padding: 0.4em;
/* Old browsers */
-webkit-box-flex: 1;
-moz-box-flex: 1;
box-flex: 1;
/* Modern browsers */
flex: 1;
max-width: calc(100% - 14ex);
}
div.output_scroll div.output_subarea {
overflow-x: visible;
}
/* The rest of the output_* classes are for special styling of the different
output types */
/* all text output has this class: */
div.output_text {
text-align: left;
color: #000;
/* This has to match that of the the CodeMirror class line-height below */
line-height: 1.21429em;
}
/* stdout/stderr are 'text' as well as 'stream', but execute_result/error are *not* streams */
div.output_stderr {
background: #fdd;
/* very light red background for stderr */
}
div.output_latex {
text-align: left;
}
/* Empty output_javascript divs should have no height */
div.output_javascript:empty {
padding: 0;
}
.js-error {
color: darkred;
}
/* raw_input styles */
div.raw_input_container {
line-height: 1.21429em;
padding-top: 5px;
}
pre.raw_input_prompt {
/* nothing needed here. */
}
input.raw_input {
font-family: monospace;
font-size: inherit;
color: inherit;
width: auto;
/* make sure input baseline aligns with prompt */
vertical-align: baseline;
/* padding + margin = 0.5em between prompt and cursor */
padding: 0em 0.25em;
margin: 0em 0.25em;
}
input.raw_input:focus {
box-shadow: none;
}
p.p-space {
margin-bottom: 10px;
}
div.output_unrecognized {
padding: 5px;
font-weight: bold;
color: red;
}
div.output_unrecognized a {
color: inherit;
text-decoration: none;
}
div.output_unrecognized a:hover {
color: inherit;
text-decoration: none;
}
.rendered_html {
color: #000;
/* any extras will just be numbers: */
}
.rendered_html :link {
text-decoration: underline;
}
.rendered_html :visited {
text-decoration: underline;
}
.rendered_html h1:first-child {
margin-top: 0.538em;
}
.rendered_html h2:first-child {
margin-top: 0.636em;
}
.rendered_html h3:first-child {
margin-top: 0.777em;
}
.rendered_html h4:first-child {
margin-top: 1em;
}
.rendered_html h5:first-child {
margin-top: 1em;
}
.rendered_html h6:first-child {
margin-top: 1em;
}
.rendered_html * + ul {
margin-top: 1em;
}
.rendered_html * + ol {
margin-top: 1em;
}
.rendered_html pre,
.rendered_html tr,
.rendered_html th,
.rendered_html td,
.rendered_html * + table {
margin-top: 1em;
}
.rendered_html * + p {
margin-top: 1em;
}
.rendered_html * + img {
margin-top: 1em;
}
.rendered_html img,
.rendered_html img.unconfined,
div.text_cell {
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: horizontal;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: horizontal;
-moz-box-align: stretch;
display: box;
box-orient: horizontal;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: row;
align-items: stretch;
}
@media (max-width: 540px) {
div.text_cell > div.prompt {