-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_loader.py
314 lines (289 loc) · 10 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import math
import os.path
import numpy as np
import itertools
import random
from torch.utils.data import Dataset
class DataLoader():
def __init__(self, data_dir, max_bags=200, max_s_len=120, mode='multi_label', flip=0.0):
self.data_dir = data_dir
self.max_bags = max_bags
self.max_s_len = max_s_len
self.mode = mode
self.flip = flip
def load_dict(file):
with open(os.path.join(data_dir, file), 'r') as f:
n_dict = len(f.readlines())
with open(os.path.join(data_dir, file), 'r') as f:
dict2id = {x.strip().split('\t')[0]: int(x.strip().split('\t')[1]) for x in f.readlines()}
id2dict = {v: k for k, v in dict2id.items()}
return n_dict, dict2id, id2dict
self.n_entity, self.entity2id, self.id2entity = load_dict('entity2id.txt')
print "number of entities: %d" % self.n_entity
self.n_relation, self.relation2id, self.id2relation = load_dict('relation2id.txt')
print "number of relations: %d" % self.n_relation
self.n_word, self.word2id, self.id2word = load_dict('word2id.txt')
print "number of words: %d" % self.n_word
self.max_pos = 100
self.n_pos = self.max_pos*2+1
train_bags, train_musk, train_pos1, train_pos2, train_labels = self.get_bags(self.create_bag('train.txt', mode))
if flip!=0:
flip_count = 0
if not os.path.exists(os.path.join(data_dir, 'flip_%f.npz'%flip)):
origin_labels = train_labels[:]
flip_labels = []
for i in range(len(train_labels)):
origin = set(list(train_labels[i]))
fliped = []
for j in range(self.n_relation):
if j not in origin:
if np.random.binomial(1, flip)==1:
flip_count += 1
fliped.append(j)
else:
if np.random.binomial(1, flip)==0:
flip_count += 1
fliped.append(j)
flip_labels.append(np.asarray(fliped, dtype=np.int_))
train_labels = flip_labels
np.savez(os.path.join(data_dir, 'flip_%f'%flip), origin_labels=origin_labels, flip_labels=flip_labels, flip_count=flip_count)
else:
flip_load = np.load(os.path.join(data_dir, 'flip_%f.npz'%flip))
train_labels = flip_load['flip_labels']
flip_count = flip_load['flip_count']
print 'flip ratio', flip, 'average flip labels per bag', float(flip_count)/len(train_labels)
self.n_train = len(train_bags)
index_list = range(self.n_train)
random.Random(111).shuffle(index_list)
train_select = index_list
self.train_bags, self.train_musk, self.train_pos1, self.train_pos2, self.train_labels = [train_bags[x] for x in train_select], [train_musk[x] for x in train_select], [train_pos1[x] for x in train_select], [train_pos2[x] for x in train_select], [train_labels[x] for x in train_select]
self.test_manual_bags, self.test_manual_musk, self.test_manual_pos1, self.test_manual_pos2, self.test_manual_labels = self.get_bags(self.create_manual_bag('manualTest.txt'))
def get_word2count(self):
worddict = dict()
with open(self.data_dir+'train.txt') as f:
for line_ in f:
line = line_.strip().split(' ')
words = line[5].split(' ')
for word in words:
if word not in worddict:
worddict[word] = 0
worddict[word] += 1
with open(self.data_dir+'test.txt') as f:
for line_ in f:
line = line_.strip().split(' ')
words = line[5].split(' ')
for word in words:
if word not in worddict:
worddict[word] = 0
worddict[word] += 1
sort_word = sorted(worddict.items(), key=lambda x:x[1], reverse=True)
with open(self.data_dir+'wordcount.txt', 'ab') as f:
for item in sort_word:
f.write(' '.join([item[0], str(item[1])])+'\n')
def read_pre_train_embedding(self):
vec = {}
with open(self.data_dir+'vec.txt') as f:
f.readline()
for line_ in f.readlines():
line = line_.strip().split(' ')
if line[0]!=' ':
vec[line[0]] = np.asarray([float(x) for x in line[1:]], dtype=np.float32)
self.pre_w = vec
def get_word2id(self, low_freq, high_freq):
index = 0
embed = []
w2id = open(self.data_dir+'word2id.txt', 'ab')
with open(self.data_dir+'wordcount.txt') as f:
for line_ in f:
line = line_.strip().split(' ')
if int(line[1])>=low_freq and int(line[1])<=high_freq:
if line[0] in self.pre_w:
embed.append(self.pre_w[line[0]])
w2id.write(' '.join([line[0], str(index)])+'\n')
index += 1
embed.append(np.random.rand(50))
embed.append(np.zeros(50))
np.save(self.data_dir+'word_embed.npy', np.asarray(embed, dtype=np.float32))
def pos_embed(self, x):
return max(0, min(x + self.max_pos, self.n_pos))
def create_bag(self, datafile, mode='multi_class'):
name_dict = dict()
bags = []
bag_index = 0
with open(self.data_dir+datafile) as f:
for line_ in f:
line = line_.strip().split(' ')
e1_id = line[0]
e2_id = line[1]
e1_name = line[2]
e2_name = line[3]
rel = line[4]
sent = line[5].split(' ')[:-1]
if mode=='multi_class':
bag_name = ' '.join([e1_id, e2_id, rel])
elif mode=='multi_label':
bag_name = ' '.join([e1_id, e2_id])
s = []
pos1 = 0
pos2 = 0
index = 0
for word in sent:
if word == e1_name:
pos1 = index
if word == e2_name:
pos2 = index
if word in self.word2id:
s.append(self.word2id[word])
else:
s.append(self.n_word)
index += 1
if bag_name not in name_dict:
name_dict[bag_name] = bag_index
bag_index += 1
bags.append([[], set()])
bags[name_dict[bag_name]][0].append((s, pos1, pos2))
bags[name_dict[bag_name]][1].add(rel)
return bags
def create_manual_bag(self, datafile):
bags = []
with open(self.data_dir+datafile) as f:
while 1:
line = f.readline()
if line!='':
lines = line.strip().split(' ')
e1_id = lines[0]
e2_id = lines[1]
e1_name = lines[2]
e2_name = lines[3]
bag_name = ' '.join([e1_id, e2_id])
rels = f.readline().strip().split(' ')
new_bag = [[], set(rels)]
num_sents = int(f.readline().strip())
for i in range(num_sents):
sent = f.readline().strip().split(' ')
s = []
pos1 = 0
pos2 = 0
index = 0
for word in sent:
if word == e1_name:
pos1 = index
if word == e2_name:
pos2 = index
if word in self.word2id:
s.append(self.word2id[word])
else:
s.append(self.n_word)
index += 1
new_bag[0].append((s, pos1, pos2))
bags.append(new_bag)
f.readline()
else:
break
return bags
def get_bags(self, bags):
normal_bags = []
musk_idxs = []
pos1_bags = []
pos2_bags = []
bag_labels = []
for key in range(len(bags)):
sents = bags[key][0]
bag_size = len(sents)
start = 0
while start<bag_size:
bs = []
musk_bs = []
p1s = []
p2s = []
#cut big bags into small ones
if start+self.max_bags>=bag_size:
ss = sents[start:]
else:
ss = sents[start:start+self.max_bags]
for s in ss:
sent = s[0]
pos = [s[1], s[2]]
pos.sort()
m_bs = []
for i in range(self.max_s_len):
if i >= len(sent):
m_bs.append(0)
elif i - pos[0]<=0:
m_bs.append(1)
elif i - pos[1]<=0:
m_bs.append(2)
else:
m_bs.append(3)
musk_bs.append(m_bs)
p1s.append([self.pos_embed(i - s[1]) for i in range(self.max_s_len)])
p2s.append([self.pos_embed(i - s[2]) for i in range(self.max_s_len)])
if len(sent)>=self.max_s_len:
exs = sent[:self.max_s_len]
else:
exs = sent
exs.extend([self.n_word+1]*(self.max_s_len-len(sent)))
exs = np.asarray(exs, dtype=np.int32)
bs.append(exs)
normal_bags.append(np.asarray(bs, dtype=np.int_)) # Sizes of tensors must match except in dimension 0 in each example in a batch
musk_idxs.append(np.asarray(musk_bs, dtype=np.int_))
pos1_bags.append(np.asarray(p1s, dtype=np.int_))
pos2_bags.append(np.asarray(p2s, dtype=np.int_))
labels = []
for l in bags[key][1]:
if l in self.relation2id:
labels.append(self.relation2id[l])
else:
labels.append(self.relation2id['NA'])
bag_labels.append(np.asarray(labels, dtype=np.int_))
start = start+self.max_bags
return normal_bags, musk_idxs, pos1_bags, pos2_bags, bag_labels
class RE_Dataset(Dataset):
def __init__(self, data_loader, dataset='train', shuffle=False):
self.data_loader = data_loader
self.dataset = dataset
self.shuffle = shuffle
if dataset=='train':
bags, musk, pos1, pos2, pos_labels = self.data_loader.train_bags, self.data_loader.train_musk, self.data_loader.train_pos1, self.data_loader.train_pos2, self.data_loader.train_labels
elif dataset=='test':
bags, musk, pos1, pos2, pos_labels = self.data_loader.test_manual_bags, self.data_loader.test_manual_musk, self.data_loader.test_manual_pos1, self.data_loader.test_manual_pos2, self.data_loader.test_manual_labels
labels = []
for ls in pos_labels:
label_rep = np.zeros(self.data_loader.n_relation, dtype=np.int_)
label_rep[ls] = 1.
labels.append(label_rep)
self.index = range(len(bags))
if shuffle:
random.shuffle(self.index)
self.bags = [bags[x] for x in self.index]
self.musk = [musk[x] for x in self.index]
self.pos1 = [pos1[x] for x in self.index]
self.pos2 = [pos2[x] for x in self.index]
self.labels = [labels[x] for x in self.index]
def data_collate(self, batch):
X = []
musk_idxs = []
p1 = []
p2 = []
y = []
i = []
for item in batch:
X.append(item[0])
musk_idxs.append(item[1])
p1.append(item[2])
p2.append(item[3])
y.append(item[4])
i.append(item[5])
return [X, musk_idxs, p1, p2, y, i]
def __len__(self):
return len(self.bags)
def __getitem__(self, idx):
X = self.bags[idx]
musk_idxs = self.musk[idx]
p1 = self.pos1[idx]
p2 = self.pos2[idx]
y = self.labels[idx]
i = self.index[idx]
return X, musk_idxs, p1, p2, y, i
if __name__=='__main__':
data_loader = DataLoader('data/', flip=0.)