-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvolutional_mlp.py
302 lines (239 loc) · 9.57 KB
/
convolutional_mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
from __future__ import print_function
import os
import sys
import timeit
import numpy
import math
import theano
import theano.tensor as T
from theano.tensor.signal import downsample
from theano.tensor.nnet import conv2d
from logistic_sgd import LogisticRegression, load_data, get_image_size, get_amount_of_classes
from mlp import HiddenLayer
# Initialize and create variables defined by user
# First, image sizes and amount of classes
dataset = '/Users/Aleksei/Desktop/testing_original'
image_x, image_y = get_image_size(dataset)
amount_classes = get_amount_of_classes(dataset)
# Pooling size
poolsize_x = 2
poolsize_y = 2
# Learning rate
# Epochs to be trained and batch size
user_learning_rate = 0.0025
user_nepochs = 15
user_batch = 20
#
# # Size of the convolution filter windows
user_filter_x = 5
user_filter_y = 5
# Treshhold for model training
user_treshhold = 0.995
class LeNetConvPoolLayer(object):
"""Pool Layer of a convolutional network """
def __init__(self, rng, input, filter_shape, image_shape, poolsize=(poolsize_x, poolsize_y)):
global poolsize_x
global poolsize_y
global image_x
global image_y
global amount_classes
global user_learning_rate
global user_nepochs
global user_batch
global user_filter_x
global user_filter_y
global user_treshold
"""
Allocate a LeNetConvPoolLayer with shared variable internal parameters.
"""
assert image_shape[1] == filter_shape[1]
self.input = input
fan_in = numpy.prod(filter_shape[1:])
fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) //
numpy.prod(poolsize))
# initialize weights with random weights
W_bound = numpy.sqrt(6. / (fan_in + fan_out))
self.W = theano.shared(
numpy.asarray(
rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
dtype=theano.config.floatX
),
borrow=True
)
b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
self.b = theano.shared(value=b_values, borrow=True)
# convolve input feature maps with filters
conv_out = conv2d(
input=input,
filters=self.W,
filter_shape=filter_shape,
input_shape=image_shape
)
# downsample each feature map individually, using maxpooling
pooled_out = downsample.max_pool_2d(
input=conv_out,
ds=poolsize,
ignore_border=True
)
#reshape bias to a tensor
self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
# parameters of the current layer
self.params = [self.W, self.b]
# model input
self.input = input
def evaluate_lenet5(learning_rate=user_learning_rate, n_epochs=user_nepochs,
dataset='/Users/Aleksei/Desktop/testing_original',
nkerns=[20, 50], batch_size=user_batch):
""" Calculates the model. If you want to modify the variables further, they are of the following format:
learning_rate: float
n_epochs: int
dataset: string
nkerns: list of ints
"""
rng = numpy.random.RandomState(23455)
datasets = load_data(dataset)
train_set_x, train_set_y = datasets[0]
valid_set_x, valid_set_y = datasets[1]
test_set_x, test_set_y = datasets[2]
# calculate the mini batches number for the three stages
n_train_batches = train_set_x.get_value(borrow=True).shape[0]
n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
n_test_batches = test_set_x.get_value(borrow=True).shape[0]
n_train_batches //= batch_size
n_valid_batches //= batch_size
n_test_batches //= batch_size
index = T.lscalar()
x = T.matrix('x') # the data is presented as a matrix of RGB of pixels
y = T.ivector('y') # the labels are presented as 1D vector of integers
####################
# BUILD THE MODEL #
####################
print('... building the model')
# Reshape the matrix to appropriate size.
layer0_input = x.reshape((batch_size, 1, image_x, image_y))
# Construct the first convolutional pooling layer
layer0 = LeNetConvPoolLayer(
rng,
input=layer0_input,
image_shape=(batch_size, 1, image_x, image_y),
filter_shape=(nkerns[0], 1, user_filter_x, user_filter_y),
poolsize=(poolsize_x, poolsize_y)
)
# Construct the further convolutional layers of the amount defined by user
layer1 = LeNetConvPoolLayer(
rng,
input=layer0.output,
image_shape=(batch_size, nkerns[0], math.floor((image_x - user_filter_x + 1) / poolsize_x),
math.floor((image_y - user_filter_y + 1) / poolsize_y)),
filter_shape=(nkerns[1], nkerns[0], user_filter_x, user_filter_y),
poolsize=(poolsize_x, poolsize_y)
)
image_x_1 = math.floor((image_x - user_filter_x + 1) / poolsize_x)
image_y_1 = math.floor((image_y - user_filter_y + 1) / poolsize_y)
# create the Hidden layer from the output of previous layers
layer2_input = layer1.output.flatten(2)
# construct a fully-connected sigmoidal layer
layer2 = HiddenLayer(
rng,
input=layer2_input,
n_in=nkerns[1] * int(math.floor((image_x_1 - user_filter_x + 1) / poolsize_x)) * int(
math.floor((image_y_1 - user_filter_y + 1) / poolsize_y)),
n_out=batch_size,
activation=T.tanh
)
# classify the values of the fully-connected sigmoidal layer
layer3 = LogisticRegression(input=layer2.output, n_in=batch_size, n_out=amount_classes)
# the cost evaluates the accuracy of the model
cost = layer3.negative_log_likelihood(y)
# test and validate the model
test_model = theano.function(
[index],
layer3.errors(y),
givens={
x: test_set_x[index * batch_size: (index + 1) * batch_size],
y: test_set_y[index * batch_size: (index + 1) * batch_size]
}
)
validate_model = theano.function(
[index],
layer3.errors(y),
givens={
x: valid_set_x[index * batch_size: (index + 1) * batch_size],
y: valid_set_y[index * batch_size: (index + 1) * batch_size]
}
)
params = layer3.params + layer2.params + layer1.params + layer0.params
grads = T.grad(cost, params)
updates = [
(param_i, param_i - learning_rate * grad_i)
for param_i, grad_i in zip(params, grads)
]
train_model = theano.function(
[index],
cost,
updates=updates,
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size],
y: train_set_y[index * batch_size: (index + 1) * batch_size]
}
)
###############
# TRAIN MODEL #
###############
print('... training')
patience = 10000
patience_increase = 2 # time between iterations
improvement_threshold = user_treshhold # result is considered to be better if improved by this K
validation_frequency = min(n_train_batches, patience // 2)
best_validation_loss = numpy.inf
best_iter = 0
test_score = 0.
start_time = timeit.default_timer()
epoch = 0
done_looping = False
while (epoch < n_epochs) and (not done_looping):
epoch = epoch + 1
for minibatch_index in range(n_train_batches):
iter = (epoch - 1) * n_train_batches + minibatch_index
if iter % 100 == 0:
print('training @ iter = ', iter)
cost_ij = train_model(minibatch_index)
if (iter + 1) % validation_frequency == 0:
# compute zero-one loss on validation set
validation_losses = [validate_model(i) for i
in range(n_valid_batches)]
this_validation_loss = numpy.mean(validation_losses)
print('epoch %i, minibatch %i/%i, validation error %f %%' %
(epoch, minibatch_index + 1, n_train_batches,
this_validation_loss * 100.))
# test if the current validation score is better than the best. save if it is.
if this_validation_loss < best_validation_loss:
if this_validation_loss < best_validation_loss * \
improvement_threshold:
patience = max(patience, iter * patience_increase)
best_validation_loss = this_validation_loss
best_iter = iter
test_losses = [
test_model(i)
for i in range(n_test_batches)
]
test_score = numpy.mean(test_losses)
print((' epoch %i, minibatch %i/%i, test error of '
'best model %f %%') %
(epoch, minibatch_index + 1, n_train_batches,
test_score * 100.))
if patience <= iter:
done_looping = True
break
end_time = timeit.default_timer()
print('Optimization complete.')
print('Best validation score of %f %% obtained at iteration %i, '
'with test performance %f %%' %
(best_validation_loss * 100., best_iter + 1, test_score * 100.))
print(('The code for file ' +
os.path.split(__file__)[1] +
' ran for %.2fm' % ((end_time - start_time) / 60.)), file=sys.stderr)
if __name__ == '__main__':
evaluate_lenet5()
def experiment(state, channel):
evaluate_lenet5(state.learning_rate, dataset=state.dataset)