-
Notifications
You must be signed in to change notification settings - Fork 2
/
NREM_accurate_spectrogram.m
118 lines (86 loc) · 2.83 KB
/
NREM_accurate_spectrogram.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
function [ripple2,timeasleep,DEMAIS,y1]=NREM_accurate(nrem,notch,chtm)
%{
LOAD DATA, easy and quick.
The V signals are the monopolar recordings of the 4 channels.
The S signals are the bipolar recordings which have been substracted the
reference signal (V6)
%}
%Band pass filter design:
fn=1000; % New sampling frequency.
Wn1=[100/(fn/2) 300/(fn/2)]; % Cutoff=500 Hz
[b1,a1] = butter(3,Wn1,'bandpass'); %Filter coefficients
%LPF 300 Hz:
fn=1000; % New sampling frequency.
Wn1=[320/(fn/2)]; % Cutoff=500 Hz
[b2,a2] = butter(3,Wn1); %Filter coefficients
%Load Sleeping stage classification
load('transitions.mat')
%Load Monopolar signals
% Fline=[50 100 150 200 250 300];
V17=load('data17m.mat');
%Monopolar
V17=V17.data17m;
%V17=V17/max(V17);
V17=filtfilt(b2,a2,V17);
%NO NEED OF NOTCH FILTER FOR HIPPOCAMPUS
%UPDATE: Actually does need one!
%V17=flipud(filter(Hcas,flipud(filter(Hcas,V17))));
if notch==1
Fline=[50 100 150 200 250.5 300];
[V17] = ft_notch(V17.', fn,Fline,1,2);
%V17=V17/median(V17);
V17=V17.';
end
%Bandpassed versions
Mono17=filtfilt(b1,a1,V17);
%NREM extraction
[V17,~]=reduce_data(V17,transitions,1000,nrem);
[Mono17,~]=reduce_data(Mono17,transitions,1000,nrem);
'Loaded channels'
%Total amount of time spent sleeping:
timeasleep=sum(cellfun('length',V17))*(1/1000)/60; % In minutes
'Bandpass performed'
%%
% [NC]=epocher(Mono17,lepoch);
% % ncmax=max(NC)*(1/0.195);
% % chtm=median(ncmax);
%
% %ncmax=quantile(NC,0.999)*(1/0.195);
% ncmax=max(NC)*(1/0.195);
% chtm=median(ncmax);
%Might need to comment this:
% chtm=median(cellfun(@max,Mono17))*(1/0.195); %Minimum maximum value among epochs.
%Median is used to account for any artifact/outlier.
% DEMAIS=linspace(floor(chtm/16),floor(chtm),30);
% g=0.5;
% DEMAIS=[chtm-5*g chtm-4*g chtm-3*g chtm-2*g chtm-1*g chtm chtm+1*g chtm+2*g chtm+3*g];
%DEMAIS=linspace((chtm/16),(chtm),30);
% rep=length(DEMAIS);
signal2=cellfun(@(equis) times((1/0.195), equis) ,Mono17,'UniformOutput',false);
ti=cellfun(@(equis) linspace(0, length(equis)-1,length(equis))*(1/fn) ,signal2,'UniformOutput',false);
%Find ripples
% for k=1:rep-1
%for k=1:rep
% k=level;
[S2x,E2x,M2x] =cellfun(@(equis1,equis2) findRipplesLisa(equis1, equis2.', chtm, (chtm)*(1/2), [] ), signal2,ti,'UniformOutput',false);
swr172(:,:,k)=[S2x E2x M2x];
s172(:,k)=cellfun('length',S2x);
%k
%end
RipFreq2=sum(s172)/(timeasleep*(60)); %RIpples per second.
%To display number of events use:
ripple2=sum(s172); %When using same threshold per epoch.
%ripple when using different threshold per epoch.
%Adjustment to prevent decrease
% DEMAIS2=DEMAIS;
% DEMAIS=DEMAIS(2:end-1);
% size(DEMAIS)
% size(ripple2)
%%
% [p]=polyfit(DEMAIS,ripple2,3);
% y1=polyval(p,DEMAIS);
% [p,S,mu]=polyfit(DEMAIS,ripple2,rep-1);
% y1=polyval(p,DEMAIS,[],mu);
% [p,S,mu]=polyfit(DEMAIS(2:end),ripple2(2:end),10);
% y1=polyval(p,DEMAIS(2:end),[],mu);
end