-
Notifications
You must be signed in to change notification settings - Fork 1
/
sort_tetrode.py
383 lines (315 loc) · 14.8 KB
/
sort_tetrode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 19 18:06:09 2020
SORT A TETRODE WITH .CONTINUOUS FILES
@author: adrian
"""
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import sys
import os
import spikeinterface
import spikeinterface.extractors as se
import spikeinterface.toolkit as st
import spikeinterface.sorters as ss
import spikeinterface.comparison as sc
import spikeinterface.widgets as sw
import matplotlib.pylab as plt
import numpy as np
import time
import glob
from shutil import rmtree
#Folder with tetrode data
#recording_folder='/home/adrian/Documents/SpikeSorting/Adrian_test_data/Irene_data/test_without_zero_main_channels/Tetrode_9_CH';
recording_folder=sys.argv[1];
os.chdir(recording_folder)
"""
Adding Matlab-based sorters to path
"""
iron_path = "~/Documents/SpikeSorting/ironclust";
#IronClust
ss.IronClustSorter.set_ironclust_path(os.path.expanduser(iron_path))
ss.IronClustSorter.ironclust_path
#HDSort
#ss.HDSortSorter.set_hdsort_path('/home/adrian/Documents/SpikeSorting/HDsort')
#ss.HDSortSorter.hdsort_path
#Waveclus
#ss.WaveClusSorter.set_waveclus_path('/home/adrian/Documents/SpikeSorting/wave_clus')
#ss.WaveClusSorter.waveclus_path
#Check if the recording has been preprocessed before and load it.
# Else proceed with preprocessing.
arr = os.listdir()
#Load .continuous files
recording = se.OpenEphysRecordingExtractor(recording_folder)
channel_ids = recording.get_channel_ids()
fs = recording.get_sampling_frequency()
num_chan = recording.get_num_channels()
print('Channel ids:', channel_ids)
print('Sampling frequency:', fs)
print('Number of channels:', num_chan)
#!cat tetrode9.prb #Asks for prb file
# os.system('cat /home/adrian/Documents/SpikeSorting/Adrian_test_data/Irene_data/test_without_zero_main_channels/Tetrode_9_CH/tetrode9.prb')
recording_prb = recording.load_probe_file('tetrode.prb')
print('Channels after loading the probe file:', recording_prb.get_channel_ids())
print('Channel groups after loading the probe file:', recording_prb.get_channel_groups())
#For testing only: Reduce recording.
#recording_prb = se.SubRecordingExtractor(recording_prb, start_frame=100*fs, end_frame=420*fs)
#Bandpass filter
recording_cmr = st.preprocessing.bandpass_filter(recording_prb, freq_min=300, freq_max=6000)
recording_cache = se.CacheRecordingExtractor(recording_cmr)
print(recording_cache.get_channel_ids())
print(recording_cache.get_channel_groups())
print(recording_cache.get_num_frames() / recording_cache.get_sampling_frequency())
#View installed sorters
#ss.installed_sorters()
#mylist = [f for f in glob.glob("*.txt")]
#%% Run all channels. There are only a single tetrode channels anyway.
#Create sub recording to avoid saving whole recording.Requirement from NWB to allow saving sorters data.
recording_sub = se.SubRecordingExtractor(recording_cache, start_frame=200*fs, end_frame=320*fs)
Sorters2Compare=[];
Sorters2CompareLabel=[];
SortersCount=[]; #Amount of detections per sorter
#Klusta
if 'sorting_KL_all.nwb' in arr:
print('Loading Klusta')
sorting_KL_all=se.NwbSortingExtractor('sorting_KL_all.nwb');
if not(not(sorting_KL_all.get_unit_ids())):
Sorters2Compare.append(sorting_KL_all);
Sorters2CompareLabel.append('KL');
else:
t = time.time()
sorting_KL_all = ss.run_klusta(recording_cache, output_folder='results_all_klusta',delete_output_folder=True)
print('Found', len(sorting_KL_all.get_unit_ids()), 'units')
time.time() - t
#Save Klusta
se.NwbRecordingExtractor.write_recording(recording_sub, 'sorting_KL_all.nwb')
se.NwbSortingExtractor.write_sorting(sorting_KL_all, 'sorting_KL_all.nwb')
if not(not(sorting_KL_all.get_unit_ids())):
Sorters2Compare.append(sorting_KL_all);
Sorters2CompareLabel.append('KL');
SortersCount.append(len(sorting_KL_all.get_unit_ids()))
#Ironclust
if 'sorting_IC_all.nwb' in arr:
print('Loading Ironclust')
sorting_IC_all=se.NwbSortingExtractor('sorting_IC_all.nwb');
if not(not(sorting_IC_all.get_unit_ids())):
Sorters2Compare.append(sorting_IC_all);
Sorters2CompareLabel.append('IC');
else:
t = time.time()
sorting_IC_all = ss.run_ironclust(recording_cache, output_folder='results_all_ic',delete_output_folder=True, filter=False)
print('Found', len(sorting_IC_all.get_unit_ids()), 'units')
time.time() - t
#Save IC
se.NwbRecordingExtractor.write_recording(recording_sub, 'sorting_IC_all.nwb')
se.NwbSortingExtractor.write_sorting(sorting_IC_all, 'sorting_IC_all.nwb')
if not(not(sorting_IC_all.get_unit_ids())):
Sorters2Compare.append(sorting_IC_all);
Sorters2CompareLabel.append('IC');
SortersCount.append(len(sorting_IC_all.get_unit_ids()))
# #Waveclust
# if 'sorting_waveclus_all.nwb' in arr:
# print('Loading waveclus')
# sorting_waveclus_all=se.NwbSortingExtractor('sorting_waveclus_all.nwb');
# if not(not(sorting_waveclus_all.get_unit_ids())):
# Sorters2Compare.append(sorting_waveclus_all);
# Sorters2CompareLabel.append('Waveclus');
# SortersCount.append(len(sorting_waveclus_all.get_unit_ids()))
# else:
# t = time.time()
# try:
# sorting_waveclus_all = ss.run_waveclus(recording_cache, output_folder='results_all_waveclus',delete_output_folder=True)
# print('Found', len(sorting_waveclus_all.get_unit_ids()), 'units')
# time.time() - t
# #Save waveclus
# se.NwbRecordingExtractor.write_recording(recording_sub, 'sorting_waveclus_all.nwb')
# se.NwbSortingExtractor.write_sorting(sorting_waveclus_all, 'sorting_waveclus_all.nwb')
# if not(not(sorting_waveclus_all.get_unit_ids())):
# Sorters2Compare.append(sorting_waveclus_all);
# Sorters2CompareLabel.append('Waveclus');
# SortersCount.append(len(sorting_waveclus_all.get_unit_ids()))
# except:
# print('Waveclus cannot be run')
#Herdingspikes
if 'sorting_herdingspikes_all.nwb' in arr:
print('Loading herdingspikes')
sorting_herdingspikes_all=se.NwbSortingExtractor('sorting_herdingspikes_all.nwb');
if not(not(sorting_herdingspikes_all.get_unit_ids())):
Sorters2Compare.append(sorting_herdingspikes_all);
Sorters2CompareLabel.append('HS');
SortersCount.append(len(sorting_herdingspikes_all.get_unit_ids()))
else:
t = time.time()
try:
sorting_herdingspikes_all = ss.run_herdingspikes(recording_cache, output_folder='results_all_herdingspikes',delete_output_folder=True)
print('Found', len(sorting_herdingspikes_all.get_unit_ids()), 'units')
time.time() - t
#Save herdingspikes
se.NwbRecordingExtractor.write_recording(recording_sub, 'sorting_herdingspikes_all.nwb')
try:
se.NwbSortingExtractor.write_sorting(sorting_herdingspikes_all, 'sorting_herdingspikes_all.nwb')
except TypeError:
print("No units detected. Can't save HerdingSpikes")
os.remove("sorting_herdingspikes_all.nwb")
if not(not(sorting_herdingspikes_all.get_unit_ids())):
Sorters2Compare.append(sorting_herdingspikes_all);
Sorters2CompareLabel.append('HS');
SortersCount.append(len(sorting_herdingspikes_all.get_unit_ids()))
except:
print('Herdingspikes has failed')
try:
rmtree("results_all_herdingspikes")
except:
print('Removed leftover herdingspikes files')
try:
rmtree("results_all_herdingspikes")
except:
print('Removed leftover herdingspikes files')
#Mountainsort4
if 'sorting_mountainsort4_all.nwb' in arr:
print('Loading mountainsort4')
sorting_mountainsort4_all=se.NwbSortingExtractor('sorting_mountainsort4_all.nwb');
if not(not(sorting_mountainsort4_all.get_unit_ids())):
Sorters2Compare.append(sorting_mountainsort4_all);
Sorters2CompareLabel.append('MS4');
else:
t = time.time()
sorting_mountainsort4_all = ss.run_mountainsort4(recording_cache, output_folder='results_all_mountainsort4',delete_output_folder=True, filter=False)
print('Found', len(sorting_mountainsort4_all.get_unit_ids()), 'units')
time.time() - t
#Save mountainsort4
se.NwbRecordingExtractor.write_recording(recording_sub, 'sorting_mountainsort4_all.nwb')
se.NwbSortingExtractor.write_sorting(sorting_mountainsort4_all, 'sorting_mountainsort4_all.nwb')
if not(not(sorting_mountainsort4_all.get_unit_ids())):
Sorters2Compare.append(sorting_mountainsort4_all);
Sorters2CompareLabel.append('MS4');
SortersCount.append(len(sorting_mountainsort4_all.get_unit_ids()))
#Spykingcircus
if 'sorting_spykingcircus_all.nwb' in arr:
print('Loading spykingcircus')
sorting_spykingcircus_all=se.NwbSortingExtractor('sorting_spykingcircus_all.nwb');
if not(not(sorting_spykingcircus_all.get_unit_ids())):
Sorters2Compare.append(sorting_spykingcircus_all);
Sorters2CompareLabel.append('SC');
else:
t = time.time()
sorting_spykingcircus_all = ss.run_spykingcircus(recording_cache, output_folder='results_all_spykingcircus',delete_output_folder=True, filter=False)
print('Found', len(sorting_spykingcircus_all.get_unit_ids()), 'units')
time.time() - t
#Save sorting_spykingcircus
se.NwbRecordingExtractor.write_recording(recording_sub, 'sorting_spykingcircus_all.nwb')
se.NwbSortingExtractor.write_sorting(sorting_spykingcircus_all, 'sorting_spykingcircus_all.nwb')
if not(not(sorting_spykingcircus_all.get_unit_ids())):
Sorters2Compare.append(sorting_spykingcircus_all);
Sorters2CompareLabel.append('SC');
SortersCount.append(len(sorting_spykingcircus_all.get_unit_ids()))
#Tridesclous
if 'sorting_tridesclous_all.nwb' in arr:
print('Loading tridesclous')
try:
sorting_tridesclous_all=se.NwbSortingExtractor('sorting_tridesclous_all.nwb');
except AttributeError:
print("No units detected. Can't load Tridesclous so will run it.")
t = time.time()
sorting_tridesclous_all = ss.run_tridesclous(recording_cache, output_folder='results_all_tridesclous',delete_output_folder=True)
print('Found', len(sorting_tridesclous_all.get_unit_ids()), 'units')
time.time() - t
os.remove("sorting_tridesclous_all.nwb")
#Save sorting_tridesclous
se.NwbRecordingExtractor.write_recording(recording_sub, 'sorting_tridesclous_all.nwb')
se.NwbSortingExtractor.write_sorting(sorting_tridesclous_all, 'sorting_tridesclous_all.nwb')
if not(not(sorting_tridesclous_all.get_unit_ids())):
Sorters2Compare.append(sorting_tridesclous_all);
Sorters2CompareLabel.append('TRI');
SortersCount.append(len(sorting_tridesclous_all.get_unit_ids()))
else:
try:
t = time.time()
sorting_tridesclous_all = ss.run_tridesclous(recording_cache, output_folder='results_all_tridesclous',delete_output_folder=True)
print('Found', len(sorting_tridesclous_all.get_unit_ids()), 'units')
time.time() - t
#Save sorting_tridesclous
se.NwbRecordingExtractor.write_recording(recording_sub, 'sorting_tridesclous_all.nwb')
se.NwbSortingExtractor.write_sorting(sorting_tridesclous_all, 'sorting_tridesclous_all.nwb')
if not(not(sorting_tridesclous_all.get_unit_ids())):
Sorters2Compare.append(sorting_tridesclous_all);
Sorters2CompareLabel.append('TRI');
SortersCount.append(len(sorting_tridesclous_all.get_unit_ids()))
except:
print('Tridesclous failed')
try:
rmtree("results_all_tridesclous")
except:
print('Removed leftover tridesclous files')
#Consensus based curation.
print(Sorters2CompareLabel)
print('Comparing sorters agreement. Please wait...')
mcmp = sc.compare_multiple_sorters(Sorters2Compare, Sorters2CompareLabel)
w = sw.plot_multicomp_agreement_by_sorter(mcmp)
# plt.show()
plt.savefig('consensus.pdf', bbox_inches='tight');
plt.savefig('consensus.png', bbox_inches='tight');
plt.close()
w = sw.plot_multicomp_agreement(mcmp)
plt.savefig('consensus_spikes.pdf', bbox_inches='tight');
plt.savefig('consensus_spikes.png', bbox_inches='tight');
plt.close()
# #Use amount of sorters which give a value closest to 10 units.
# agreed_units=[];
# for x in [1,2,3,4,5]:
# agreement_sorting = mcmp.get_agreement_sorting(minimum_agreement_count=x)
# agreed_units.append(len(agreement_sorting.get_unit_ids()));
# print(agreed_units)
# print(agreed_units.index(min(agreed_units, key=lambda x:abs(x-10)))+1)
# agreement_sorting = mcmp.get_agreement_sorting(minimum_agreement_count=
# agreed_units.index(min(agreed_units, key=lambda x:abs(x-10)))+1);
# Use units with at least 2 sorters agreeing.
agreement_sorting = mcmp.get_agreement_sorting(minimum_agreement_count=2)
print(agreement_sorting.get_unit_ids())
phy_folder_name='phy_AGR';
if not(agreement_sorting.get_unit_ids()): #If there is no agreement.
# print('No consensus. Finding sorter with closest to expected amount of units')
# print(Sorters2CompareLabel[SortersCount.index(min(SortersCount, key=lambda x:abs(x-10)))])
# agreement_sorting=Sorters2Compare[SortersCount.index(min(SortersCount, key=lambda x:abs(x-10)))]
print('No consensus. Using detections from MountainSort4')
agreement_sorting=sorting_mountainsort4_all;
phy_folder_name='phy_MS4';
st.postprocessing.export_to_phy(recording_cache,
agreement_sorting, output_folder=phy_folder_name,
grouping_property='group', verbose=True, recompute_info=True)
# se.NwbRecordingExtractor.write_recording(recording_sub, 'agreement_sorting.nwb')
# se.NwbSortingExtractor.write_sorting(agreement_sorting, 'agreement_sorting.nwb')
# os.system('phy template-gui phy_AGR/params.py')
# sorting_phy_curated = se.PhySortingExtractor('phy_AGR/', exclude_cluster_groups=['noise']);
# se.NwbRecordingExtractor.write_recording(recording_sub, 'consensus_phy_curated.nwb')
# se.NwbSortingExtractor.write_sorting(sorting_phy_curated, 'consensus_phy_curated.nwb')
w_wf = sw.plot_unit_templates(sorting=agreement_sorting, recording=recording_cache)
plt.savefig('unit_templates.pdf', bbox_inches='tight');
plt.savefig('unit_templates.png', bbox_inches='tight');
plt.close()
#Access unit ID and firing rate.
os.chdir(phy_folder_name)
spike_times=np.load('spike_times.npy');
spike_clusters=np.load('spike_clusters.npy');
#Create a list with the unit IDs
some_list=np.unique(spike_clusters)
some_list=some_list.tolist()
#Bin data in bins of 25ms
#45 minutes
bins=np.arange(start=0, stop=45*60*fs+1, step=.025*fs)
NData=np.zeros([np.unique(spike_clusters).shape[0],bins.shape[0]-1])
cont=0;
for x in some_list:
ind=(spike_clusters==x)
fi=spike_times[ind]
inds = np.histogram(fi, bins=bins)
inds1=inds[0]
NData[cont,:]=inds1;
cont=cont+1;
#Save activation matrix
os.chdir("..")
a=os.path.split(os.getcwd())[1]
np.save('actmat_auto_'+a.split('_')[1], NData)
np.save('unit_id_auto_'+a.split('_')[1],some_list)
sys.exit("Stop the code here")