-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathop_kp_printer.cpp
374 lines (326 loc) · 17.4 KB
/
op_kp_printer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
/*
* To be placed in openpose/examples/user_code
* See OpenPose's documentation for more info at https://github.com/CMU-Perceptual-Computing-Lab/openpose
*
* It reads the frames from the input video, process them and display them with the pose (and optionally hand and face) keypoints.
* It creates an output csv file in which every line is formed by:
* - frame number
* - keypoint name
* - X and Y coordinates
* - model's confidence
*
* At the end of computation it prints on screen the avarage FPS, the avarage overall confidence
* and the avarage confidence considering only the index and the nose.
*
* it includes all the OpenPose configuration flags (enable/disable hand, face, no_display, etc.).
*/
// Third-party dependencies
#include <opencv2/opencv.hpp>
#include <chrono>
// Command-line user interface
#define OPENPOSE_FLAGS_DISABLE_PRODUCER
#define OPENPOSE_FLAGS_DISABLE_DISPLAY
#include <openpose/flags.hpp>
// OpenPose dependencies
#include <openpose/headers.hpp>
// Custom OpenPose flags
// Producer
DEFINE_string(image_dir, "examples/media/",
"Process a directory of images. Read all standard formats (jpg, png, bmp, etc.).");
// Display
DEFINE_bool(no_display, false,
"Enable to disable the visual display.");
// paths to the input video and to the output csv file
const char video_path[] = "/home/parco04/OneDrivePARCO/General/Video/Index-Nose Pose Estimation/video0001-0090.avi";
const char output_csv_path[] = "/home/parco04/op_output.csv";
// This worker will just read and return all the jpg files in a directory
bool display(const std::shared_ptr<std::vector<std::shared_ptr<op::Datum>>>& datumsPtr)
{
try
{
// User's displaying/saving/other processing here
// datum.cvOutputData: rendered frame with pose or heatmaps
// datum.poseKPs: Array<float> with the estimated pose
if (datumsPtr != nullptr && !datumsPtr->empty())
{
// Display image and sleeps at least 1 ms (it usually sleeps ~5-10 msec to display the image)
const cv::Mat cvMat = OP_OP2CVCONSTMAT(datumsPtr->at(0)->cvOutputData);
cv::imshow(OPEN_POSE_NAME_AND_VERSION + " - Tutorial C++ API", cvMat);
}
else
op::opLog("Nullptr or empty datumsPtr found.", op::Priority::High);
const auto key = (char)cv::waitKey(1);
return (key == 27);
}
catch (const std::exception& e)
{
op::error(e.what(), __LINE__, __FUNCTION__, __FILE__);
return true;
}
}
double printKeypoints(const std::shared_ptr<std::vector<std::shared_ptr<op::Datum>>>& datumsPtr, unsigned frameNumber, std::ofstream *outcsv, double *avgConfIndexNose)
{
double avgFrameConfidence = 0.0f;
try
{
if (datumsPtr != nullptr && !datumsPtr->empty())
{
/*
// I wanted to do this:
// retrieve the used model
const auto poseModel = op::flagsToPoseModel(op::String(FLAGS_model_pose));
// use the model to retrieve the body parts map
const std::map<unsigned int, std::string>& bodyPartsMap = op::getPoseBodyPartMapping(poseModel);
// but the model will always be BODY_25 because the other models are currently marked
// as 'Experimental' and they will not be retrieved by any function, so I did in the following way...
*/
const std::map<unsigned int, std::string>& bodyPartsMap = op::getPoseBodyPartMapping(op::PoseModel(14));
// 14 is the index corresponding to POSE_BODY_135_BODY_PARTS: a map with all the 135 body parts
// Instad of passing the model to getPoseBodyPartMapping, I force the function to returne the complete map
std::string valueToPrint;
double totSize = 0.0f;
const double confThresh = 0.30f; // confidence threshold
const auto& poseKPs = datumsPtr->at(0)->poseKeypoints;
const auto& faceKPs = datumsPtr->at(0)->faceKeypoints;
const auto& handsKPs = datumsPtr->at(0)->handKeypoints;
const int& imWidth = datumsPtr->at(0)->cvInputData.cols();
const int& imHeight = datumsPtr->at(0)->cvInputData.rows();
/* assuming there's only one person (as we need) */
for (int bodyPart = 0; bodyPart < poseKPs.getSize(1); bodyPart++) {
bool foundOutOfBoundaries = false;
valueToPrint += std::to_string(frameNumber) + ";";
valueToPrint += bodyPartsMap.at(bodyPart) + ";";
const auto size = poseKPs.getSize(2);
for (int xyscore = 0; xyscore < size; xyscore++) {
/* Check if the current point's coordinates are withing the image boundaries.
This happens for a couple of KPs and it creates problem with INDE_performance_test */
if (poseKPs[ {0, bodyPart, 0} ] > imWidth || poseKPs[ {0, bodyPart, 1} ] > imHeight ||
poseKPs[ {0, bodyPart, 0} ] < 0 || poseKPs[ {0, bodyPart, 1} ] < 0)
{
foundOutOfBoundaries = true;
break;
}
valueToPrint += std::to_string(poseKPs[ {0, bodyPart, xyscore} ]) + ";";
// if foundOutOfBoundaries, we won't reach this if statement
if (xyscore == size - 1 && poseKPs[{0, bodyPart, xyscore}] >= confThresh) {
avgFrameConfidence += poseKPs[{0, bodyPart, xyscore}];
totSize++;
}
}
if (! foundOutOfBoundaries) {
valueToPrint = valueToPrint.substr(0, valueToPrint.size() - 1); // delete last semicolon (needed for INDE_performance_test)
//op::opLog(valueToPrint, op::Priority::High);
*outcsv << valueToPrint << '\n';
}
valueToPrint = "";
}
if (FLAGS_face) {
for (int facePart = 0; facePart < faceKPs.getSize(1); facePart++) {
valueToPrint += std::to_string(frameNumber) + ";";
valueToPrint += bodyPartsMap.at(facePart + op::F135) + ";";
const auto size = faceKPs.getSize(2);
for (int xyscore = 0; xyscore < faceKPs.getSize(2); xyscore++) {
valueToPrint += std::to_string(faceKPs[ {0, facePart, xyscore} ]) + ";";
if (xyscore == size - 1 && faceKPs[{0, facePart, xyscore}] >= confThresh) {
avgFrameConfidence += faceKPs[{0, facePart, xyscore}];
totSize++;
if (facePart == 30) // 30 is the number of NoseUpper3, the nose tip
*avgConfIndexNose += faceKPs[{0, facePart, xyscore}];
}
}
valueToPrint = valueToPrint.substr(0, valueToPrint.size() - 1);
//op::opLog(valueToPrint, op::Priority::High);
*outcsv << valueToPrint << '\n';
valueToPrint = "";
}
}
if (FLAGS_hand) {
for (short handNumber = 0; handNumber < 2; handNumber++) {
for (int handPart = 0; handPart < handsKPs[handNumber].getSize(1) /*- 1*/; handPart++) {
valueToPrint += std::to_string(frameNumber) + ";";
valueToPrint += bodyPartsMap.at(handPart + op::H135 + 20 * handNumber) + ";";
const auto size = handsKPs[handNumber].getSize(2);
for (int xyscore = 0; xyscore < handsKPs[handNumber].getSize(2); xyscore++) {
valueToPrint += std::to_string(handsKPs[handNumber][{0, handPart, xyscore}]) + ";";
if (xyscore == size - 1 && handsKPs[handNumber][{0, handPart, xyscore}] >= confThresh) {
avgFrameConfidence += handsKPs[handNumber][{0, handPart, xyscore}];
totSize++;
// if we're on the left index finger tip...
if (handNumber == 0 && handPart == 7)
*avgConfIndexNose += handsKPs[handNumber][{0, handPart, xyscore}];
}
}
valueToPrint = valueToPrint.substr(0, valueToPrint.size() - 1);
//op::opLog(valueToPrint, op::Priority::High);
*outcsv << valueToPrint << '\n';
valueToPrint = "";
}
}
}
return avgFrameConfidence / totSize;
}
else
op::opLog("Nullptr or empty datumsPtr found.", op::Priority::High);
}
catch (const std::exception& e)
{
op::error(e.what(), __LINE__, __FUNCTION__, __FILE__);
}
return avgFrameConfidence; // in case of exception or datumsPtr == nullptr, returns 0
}
void configureWrapper(op::Wrapper& opWrapper)
{
try
{
// Configuring OpenPose
// logging_level
op::checkBool(
0 <= FLAGS_logging_level && FLAGS_logging_level <= 255, "Wrong logging_level value.",
__LINE__, __FUNCTION__, __FILE__);
op::ConfigureLog::setPriorityThreshold((op::Priority)FLAGS_logging_level);
op::Profiler::setDefaultX(FLAGS_profile_speed);
// Applying user defined configuration - GFlags to program variables
// outputSize
const auto outputSize = op::flagsToPoint(op::String(FLAGS_output_resolution), "-1x-1");
// netInputSize
const auto netInputSize = op::flagsToPoint(op::String(FLAGS_net_resolution), "-1x368");
// faceNetInputSize
const auto faceNetInputSize = op::flagsToPoint(op::String(FLAGS_face_net_resolution), "368x368 (multiples of 16)");
// handNetInputSize
const auto handNetInputSize = op::flagsToPoint(op::String(FLAGS_hand_net_resolution), "368x368 (multiples of 16)");
// poseMode
const auto poseMode = op::flagsToPoseMode(FLAGS_body);
// poseModel
const auto poseModel = op::flagsToPoseModel(op::String(FLAGS_model_pose));
// JSON saving
if (!FLAGS_write_keypoint.empty())
op::opLog(
"Flag `write_keypoint` is deprecated and will eventually be removed. Please, use `write_json`"
" instead.", op::Priority::Max);
// keypointScaleMode
const auto keypointScaleMode = op::flagsToScaleMode(FLAGS_keypoint_scale);
// heatmaps to add
const auto heatMapTypes = op::flagsToHeatMaps(FLAGS_heatmaps_add_parts, FLAGS_heatmaps_add_bkg,
FLAGS_heatmaps_add_PAFs);
const auto heatMapScaleMode = op::flagsToHeatMapScaleMode(FLAGS_heatmaps_scale);
// >1 camera view?
const auto multipleView = (FLAGS_3d || FLAGS_3d_views > 1);
// Face and hand detectors
const auto faceDetector = op::flagsToDetector(FLAGS_face_detector);
const auto handDetector = op::flagsToDetector(FLAGS_hand_detector);
// Enabling Google Logging
const bool enableGoogleLogging = true;
// Pose configuration (use WrapperStructPose{} for default and recommended configuration)
const op::WrapperStructPose wrapperStructPose{
poseMode, netInputSize, outputSize, keypointScaleMode, FLAGS_num_gpu, FLAGS_num_gpu_start,
FLAGS_scale_number, (float)FLAGS_scale_gap, op::flagsToRenderMode(FLAGS_render_pose, multipleView),
poseModel, !FLAGS_disable_blending, (float)FLAGS_alpha_pose, (float)FLAGS_alpha_heatmap,
FLAGS_part_to_show, op::String(FLAGS_model_folder), heatMapTypes, heatMapScaleMode, FLAGS_part_candidates,
(float)FLAGS_render_threshold, FLAGS_number_people_max, FLAGS_maximize_positives, FLAGS_fps_max,
op::String(FLAGS_prototxt_path), op::String(FLAGS_caffemodel_path),
(float)FLAGS_upsampling_ratio, enableGoogleLogging};
opWrapper.configure(wrapperStructPose);
// Face configuration (use op::WrapperStructFace{} to disable it)
const op::WrapperStructFace wrapperStructFace{
FLAGS_face, faceDetector, faceNetInputSize,
op::flagsToRenderMode(FLAGS_face_render, multipleView, FLAGS_render_pose),
(float)FLAGS_face_alpha_pose, (float)FLAGS_face_alpha_heatmap, (float)FLAGS_face_render_threshold};
opWrapper.configure(wrapperStructFace);
// Hand configuration (use op::WrapperStructHand{} to disable it)
const op::WrapperStructHand wrapperStructHand{
FLAGS_hand, handDetector, handNetInputSize, FLAGS_hand_scale_number, (float)FLAGS_hand_scale_range,
op::flagsToRenderMode(FLAGS_hand_render, multipleView, FLAGS_render_pose), (float)FLAGS_hand_alpha_pose,
(float)FLAGS_hand_alpha_heatmap, (float)FLAGS_hand_render_threshold};
opWrapper.configure(wrapperStructHand);
// Extra functionality configuration (use op::WrapperStructExtra{} to disable it)
const op::WrapperStructExtra wrapperStructExtra{
FLAGS_3d, FLAGS_3d_min_views, FLAGS_identification, FLAGS_tracking, FLAGS_ik_threads};
opWrapper.configure(wrapperStructExtra);
// Output (comment or use default argument to disable any output)
const op::WrapperStructOutput wrapperStructOutput{
FLAGS_cli_verbose, op::String(FLAGS_write_keypoint), op::stringToDataFormat(FLAGS_write_keypoint_format),
op::String(FLAGS_write_json), op::String(FLAGS_write_coco_json), FLAGS_write_coco_json_variants,
FLAGS_write_coco_json_variant, op::String(FLAGS_write_images), op::String(FLAGS_write_images_format),
op::String(FLAGS_write_video), FLAGS_write_video_fps, FLAGS_write_video_with_audio,
op::String(FLAGS_write_heatmaps), op::String(FLAGS_write_heatmaps_format), op::String(FLAGS_write_video_3d),
op::String(FLAGS_write_video_adam), op::String(FLAGS_write_bvh), op::String(FLAGS_udp_host),
op::String(FLAGS_udp_port)};
opWrapper.configure(wrapperStructOutput);
// No GUI. Equivalent to: opWrapper.configure(op::WrapperStructGui{});
// Set to single-thread (for sequential processing and/or debugging and/or reducing latency)
if (FLAGS_disable_multi_thread)
opWrapper.disableMultiThreading();
}
catch (const std::exception& e)
{
op::error(e.what(), __LINE__, __FUNCTION__, __FILE__);
}
}
int tutorialApiCpp()
{
try
{
op::opLog("Starting OpenPose demo...", op::Priority::High);
const auto opTimer = op::getTimerInit();
// Configuring OpenPose
op::opLog("Configuring OpenPose...", op::Priority::High);
op::Wrapper opWrapper{op::ThreadManagerMode::Asynchronous};
configureWrapper(opWrapper);
// Starting OpenPose
op::opLog("Starting thread(s)...", op::Priority::High);
opWrapper.start();
// create VideoCapture object to read the video
cv::VideoCapture videocap(video_path);
if (!videocap.isOpened())
op::opLog("Error opening the video", op::Priority::High);
// used for fps evaluation
typedef std::chrono::high_resolution_clock HighResCK;
typedef std::chrono::duration<double> duration;
cv::Mat frame;
unsigned frameNumber = 0;
double avgFPS = 0.0f;
double avgConf = 0.0f;
double avgConfIndexNose = 0.0f; // Avarage frame confidence only for index and nose
// open csv file to save keypoints data
std::ofstream outcsv;
outcsv.open(output_csv_path, std::ios::out | std::ios::trunc);
while (1) {
if (!videocap.read(frame)) // read a frame of the video and put it into "frame"
break;
// process the image and compute the time taken
const op::Matrix imageToProcess = OP_CV2OPCONSTMAT(frame);
auto startTime = HighResCK::now();
auto datumProcessed = opWrapper.emplaceAndPop(imageToProcess);
duration elabTime = HighResCK::now() - startTime;
avgFPS += elabTime.count();
if (datumProcessed != nullptr) {
avgConf += printKeypoints(datumProcessed, ++frameNumber, &outcsv, &avgConfIndexNose);
if (!FLAGS_no_display)
display(datumProcessed);
}
}
outcsv.close();
avgFPS /= (double) frameNumber;
avgFPS = /*(double)*/ 1.0f / avgFPS;
avgConf /= (double) frameNumber;
avgConfIndexNose /= (double)(2 * frameNumber); // 2 is the number of body parts included in the measurement
// Measuring total time, avarage FPS and avarage confidence
op::printTime(opTimer, "OpenPose demo successfully finished. Total time: ", " seconds.", op::Priority::High);
op::opLog("Avarage FPS: " + std::to_string(avgFPS), op::Priority::High);
op::opLog("Avarage confidence: " + std::to_string(avgConf), op::Priority::High);
op::opLog("Avarage confidence for index and nose: " + std::to_string(avgConfIndexNose), op::Priority::High);
// Return
return 0;
}
catch (const std::exception&)
{
return -1;
}
}
int main(int argc, char *argv[])
{
// Parsing command line flags
gflags::ParseCommandLineFlags(&argc, &argv, true);
// Running tutorialApiCpp
return tutorialApiCpp();
}