-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain-NIR.py
103 lines (84 loc) · 5.12 KB
/
train-NIR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import time
from options.train_options import TrainOptions
from data.VCIP_nir2rgb_dataset import *
from models.CycleGanNIR_model import *
from util.visualizer import Visualizer
if __name__ == '__main__':
opt = TrainOptions().parse() # get training options
dataset1= VCIPNir2RGBDataset_paired(opt) # create dataset
print("dataset [%s] was created" % type(dataset1).__name__)
dataloader1 = torch.utils.data.DataLoader(dataset1, batch_size=opt.batch_size,
shuffle=not opt.serial_batches, num_workers=int(opt.num_threads))
dataset_size1 = len(dataset1) # get the number of images in the dataset.
print('The number of training images = %d' % dataset_size1)
dataset2= VCIPNir2RGBDataset(opt) # create dataset
print("dataset [%s] was created" % type(dataset2).__name__)
dataloader2 = torch.utils.data.DataLoader(dataset2, batch_size=opt.batch_size,
shuffle=not opt.serial_batches, num_workers=int(opt.num_threads))
dataset_size2 = len(dataset2) # get the number of images in the dataset.
print('The number of training images = %d' % dataset_size2)
model = CycleGANModel(opt)
model.setup(opt) # regular setup: load and print networks; create schedulers
visualizer = Visualizer(opt) # create a visualizer that display/save images and plots
total_iters = 0 # the total number of training iterations
for epoch in range(opt.epoch_count, opt.n_epochs + opt.n_epochs_decay + 1): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
visualizer.reset() # reset the visualizer: make sure it saves the results to HTML at least once every epoch
# if epoch > 400 and epoch <= 800:
# opt.lambda_A = (800-epoch + 1)/400*10
# opt.lambda_B = (800-epoch + 1)/400*30
if epoch <= 250:
dataloader = dataloader1
dataset_size = dataset_size1
flag = 1
opt.lr = 0.0001
# if epoch < 800:
# dataloader = dataloader2
# dataset_size = dataset_size2
# # opt.lambda_A = 10
# # opt.lambda_B = 10
# flag = 2
elif epoch%2 == 1:
dataloader = dataloader2
dataset_size = dataset_size2
flag = 2
opt.lr = 0.00006
else:
dataloader = dataloader1
dataset_size = dataset_size1
flag = 1
opt.lr = 0.00006
for i, data in enumerate(dataloader): # inner loop within one epoch
iter_start_time = time.time() # timer for computation per iteration
if total_iters % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
total_iters += opt.batch_size
epoch_iter += opt.batch_size
model.set_input(data) # unpack data from dataset and apply preprocessing
model.optimize_parameters(flag) # calculate loss functions, get gradients, update network weights
# if total_iters % opt.print_freq == 0:
# losses = model.get_current_losses()
# t_comp = (time.time() - iter_start_time) / opt.batch_size
# visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data)
if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file
save_result = total_iters % opt.update_html_freq == 0
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk
losses = model.get_current_losses()
t_comp = (time.time() - iter_start_time) / opt.batch_size
visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data)
if opt.display_id > 0:
visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses)
iter_data_time = time.time()
if epoch % opt.save_epoch_freq == 0: # save our model every <save_epoch_freq> epochs
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
# model.save_networks('latest')
model.save_networks(epoch)
if epoch % opt.save_latest_freq == 0: # cache our latest model every epoch
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
model.save_networks('latest')
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.n_epochs + opt.n_epochs_decay, time.time() - epoch_start_time))
model.update_learning_rate() # update learning rates at the end of every epoch.