-
Notifications
You must be signed in to change notification settings - Fork 1
/
inference_vqlol.py
63 lines (52 loc) · 2.29 KB
/
inference_vqlol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import argparse
import cv2
import glob
import os
from tqdm import tqdm
import torch
# from yaml import load
from utils import img2tensor, tensor2img, imwrite
from models.vqlol_arch import VQLOL
import os
os.environ['CUDA_VISIBLE_DEVICES']='1'
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1' CUDA_VISIBLE_DEVICES=1 python basicsr/test.py -opt options/test_LOLBlur_LQ_stage_AIEM.yml
def main():
"""Inference demo for FeMaSR
"""
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input', type=str, default='/input_dir', help='Input image or folder')
parser.add_argument('-w', '--weight', type=str, default='./model_weights/VQCNIR_LOLBlur_G.pth', help='path for model weights')
parser.add_argument('-o', '--output', type=str, default='./results_test_LOLBlur/enhanced', help='Output folder')
parser.add_argument('--suffix', type=str, default='', help='Suffix of the restored image')
parser.add_argument('--max_size', type=int, default=6000, help='Max image size for whole image inference, otherwise use tiled_test')
args = parser.parse_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# set up the model
sr_model = VQLOL(codebook_params=[[32, 1024, 512]], LQ_stage=True, scale_factor=1).to(device)
sr_model.load_state_dict(torch.load(args.weight)['params'], strict=False)
sr_model.eval()
os.makedirs(args.output, exist_ok=True)
if os.path.isfile(args.input):
paths = [args.input]
else:
paths = sorted(glob.glob(os.path.join(args.input, '*')))
pbar = tqdm(total=len(paths), unit='image')
for idx, path in enumerate(paths):
img_name = os.path.basename(path)
pbar.set_description(f'Test {img_name}')
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
img_tensor = img2tensor(img).to(device) / 255.
img_tensor = img_tensor.unsqueeze(0)
max_size = args.max_size ** 2
h, w = img_tensor.shape[2:]
if h * w < max_size:
output = sr_model.test(img_tensor)
else:
output = sr_model.test_tile(img_tensor)
output_img = tensor2img(output)
save_path = os.path.join(args.output, f'{img_name}')
imwrite(output_img, save_path)
pbar.update(1)
pbar.close()
if __name__ == '__main__':
main()