-
Notifications
You must be signed in to change notification settings - Fork 106
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
训练时报错 #2
Comments
您好,确实是由于CUDA没法运行 |
谢谢您的回复,但我测试了./bandwidthTest ,显示pass |
根据下方的issue是版本高的问题 |
请问一下大佬该如何预测这个模型呢 |
jaywalnut310/vits#15 (comment) |
在ubuntu系统环境下训练,在训练时时提示cuda不支持complexhalf计算,请问一下是cuda安装问题吗
错误日志:
python train.py -c configs/biaobei_base.json -m biaobei_base
[INFO] {'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 200, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 4, 'fp16_run': True, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/train_filelist.txt.cleaned', 'validation_files': 'filelists/val_filelist.txt.cleaned', 'text_cleaners': ['chinese_cleaners1'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 0, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False}, 'model_dir': './logs/biaobei_base'}
[WARNING] /home/zzh/下载/vits-mandarin-biaobei-main is not a git repository, therefore hash value comparison will be ignored.
/home/zzh/.local/lib/python3.8/site-packages/torch/functional.py:572: UserWarning: stft will soon require the return_complex parameter be given for real inputs, and will further require that return_complex=True in a future PyTorch release. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:659.)
return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]
Traceback (most recent call last):
File "train.py", line 295, in
main()
File "train.py", line 55, in main
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
File "/home/zzh/.local/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 230, in spawn
return start_processes(fn, args, nprocs, join, daemon, start_method='spawn')
File "/home/zzh/.local/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 188, in start_processes
while not context.join():
File "/home/zzh/.local/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 150, in join
raise ProcessRaisedException(msg, error_index, failed_process.pid)
torch.multiprocessing.spawn.ProcessRaisedException:
-- Process 0 terminated with the following error:
Traceback (most recent call last):
File "/home/zzh/.local/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 59, in _wrap
fn(i, *args)
File "/home/zzh/下载/vits-mandarin-biaobei-main/train.py", line 122, in run
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
File "/home/zzh/下载/vits-mandarin-biaobei-main/train.py", line 195, in train_and_evaluate
scaler.scale(loss_gen_all).backward()
File "/home/zzh/.local/lib/python3.8/site-packages/torch/_tensor.py", line 307, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
File "/home/zzh/.local/lib/python3.8/site-packages/torch/autograd/init.py", line 154, in backward
Variable._execution_engine.run_backward(
RuntimeError: "fill_cuda" not implemented for 'ComplexHalf'
The text was updated successfully, but these errors were encountered: