-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsplit_dataset.py
96 lines (78 loc) · 3.34 KB
/
split_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import hydra
import json
import torch
import numpy as np
from datasets.wildfire_data_module import WildfireDataModule
from pathlib import Path
from loguru import logger
from omegaconf import DictConfig
from logging_utils.logging import setup_logger
@hydra.main(version_base=None, config_path="config", config_name="split_dataset")
def main(cfg: DictConfig):
run_name = cfg["run"]["name"]
debug = cfg["debug"]
setup_logger(logger, run_name, debug)
logger.info(f"Run name: {run_name}")
logger.info(f"Debug : {debug}")
output_folder_path = Path(cfg["data"]["output_folder_path"]) / Path(
cfg["run"]["name"]
)
output_folder_path.mkdir(parents=True, exist_ok=True)
train_periods = get_train_periods(cfg)
input_data_periods_folders_paths = [
Path(p) for p in cfg["data"]["input_data_periods_folders_paths"]
]
target_periods_folders_paths = [
Path(p) for p in cfg["data"]["target_periods_folders_paths"]
]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Device: {device}")
logger.info(f"Seed: {cfg.seed}")
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
data_module = WildfireDataModule(
input_data_indexes_to_remove=[],
seed=cfg["seed"],
model_input_size=cfg["model"]["input_resolution_in_pixels"],
input_data_periods_folders_paths=input_data_periods_folders_paths,
target_periods_folders_paths=target_periods_folders_paths,
train_periods=train_periods,
val_split=cfg["training"]["val_split"],
preprocessing_num_workers=cfg["data"]["preprocessing_num_workers"],
output_folder_path=output_folder_path,
device=device,
min_percent_pixels_with_valid_data=cfg["data"][
"min_percent_pixels_with_valid_data"
],
input_data_min_fraction_of_bands_with_valid_data=cfg["data"][
"input_data_min_fraction_of_bands_with_valid_data"
],
max_no_fire_proportion=cfg["data"]["max_no_fire_proportion"],
min_nb_pixels_with_fire_per_tile=cfg["data"][
"min_nb_pixels_with_fire_per_tile"
],
)
data_split_info = data_module.split_data()
info_file_path = output_folder_path / "data_split_info.json"
with open(info_file_path, "w") as f:
json.dump(data_split_info, f, indent=4)
logger.info(f"Data split info saved to {str(info_file_path)}")
def get_train_periods(cfg: DictConfig) -> list:
target_year_start_inclusive = cfg["training"]["train_periods"]["start_inclusive"]
target_year_end_inclusive = cfg["training"]["train_periods"]["end_inclusive"]
target_period_length_in_years = cfg["training"]["train_periods"][
"period_length_in_years"
]
target_years_ranges = []
for target_year_start in range(
target_year_start_inclusive, target_year_end_inclusive + 1, 1
):
target_year_end = target_year_start + target_period_length_in_years - 1
assert (
target_year_end <= target_year_end_inclusive
), f"Target year end {target_year_end} is greater than target year end inclusive {target_year_end_inclusive}"
target_years_ranges.append(range(target_year_start, target_year_end + 1))
logger.info(f"Train target years ranges: {target_years_ranges}")
return target_years_ranges
if __name__ == "__main__":
main()