-
Notifications
You must be signed in to change notification settings - Fork 6
/
train_video_n3dv_base.py
885 lines (702 loc) · 37.4 KB
/
train_video_n3dv_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
from hashlib import md5
from multiprocessing import process
from operator import index
from pydoc import describe
import torch
import torch.cuda
import torch.optim
import torch.nn as nn
import torch.nn.functional as F
import svox2
import svox2.csrc as _C
import svox2.utils
import json
import imageio
import os
from os import path
import time
import shutil
import gc
import math
import argparse
import numpy as np
from util.dataset import datasets
from util.util import Timing, get_expon_lr_func, viridis_cmap
from util import config_util
from warnings import warn
from datetime import datetime
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from typing import NamedTuple, Optional, Union
from loguru import logger
from multiprocess import Pool
# runtime_svox2file = os.path.join(os.path.dirname(svox2.__file__), 'svox2.py')
# update_svox2file = '../svox2/svox2.py'
# if md5(open(runtime_svox2file,'rb').read()).hexdigest() != md5(open(update_svox2file,'rb').read()).hexdigest():
# raise Exception("Not INSTALL the NEWEST svox2.py")
device = "cuda" if torch.cuda.is_available() else "cpu"
parser = argparse.ArgumentParser()
config_util.define_common_args(parser)
group = parser.add_argument_group("general")
group.add_argument('--train_dir', '-t', type=str, default='ckpt',
help='checkpoint and logging directory')
group.add_argument('--basis_type',
choices=['sh', '3d_texture', 'mlp'],
default='sh',
help='Basis function type')
group.add_argument('--sh_dim', type=int, default=9, help='SH/learned basis dimensions (at most 10)')
group = parser.add_argument_group("optimization")
group.add_argument('--n_iters', type=int, default=10 * 12800, help='total number of iters to optimize for')
group.add_argument('--batch_size', type=int, default=
20000,
help='batch size')
group.add_argument('--sigma_optim', choices=['sgd', 'rmsprop'], default='rmsprop', help="Density optimizer")
group.add_argument('--lr_sigma', type=float, default=3e1, help='SGD/rmsprop lr for sigma')
group.add_argument('--lr_sigma_final', type=float, default=5e-2)
group.add_argument('--lr_sigma_decay_steps', type=int, default=250000)
group.add_argument('--lr_sigma_delay_steps', type=int, default=15000,
help="Reverse cosine steps (0 means disable)")
group.add_argument('--lr_sigma_delay_mult', type=float, default=1e-2)#1e-4)#1e-4)
group.add_argument('--sh_optim', choices=['sgd', 'rmsprop'], default='rmsprop', help="SH optimizer")
group.add_argument('--lr_sh', type=float, default=1e-2,help='SGD/rmsprop lr for SH')
group.add_argument('--lr_sh_final', type=float,default=5e-6)
group.add_argument('--lr_sh_decay_steps', type=int, default=250000)
group.add_argument('--lr_sh_delay_steps', type=int, default=0, help="Reverse cosine steps (0 means disable)")
group.add_argument('--lr_sh_delay_mult', type=float, default=1e-2)
group.add_argument('--lr_fg_begin_step', type=int, default=0, help="Foreground begins training at given step number")
group.add_argument('--rms_beta', type=float, default=0.95, help="RMSProp exponential averaging factor")
group.add_argument('--print_every', type=int, default=20, help='print every')
group.add_argument('--save_every', type=int, default=5,
help='save every x epochs')
group.add_argument('--eval_every', type=int, default=1,
help='evaluate every x epochs')
group.add_argument('--init_sigma', type=float,
default=0.1,
help='initialization sigma')
group.add_argument('--log_mse_image', action='store_true', default=False)
group.add_argument('--log_depth_map', action='store_true', default=False)
group.add_argument('--log_depth_map_use_thresh', type=float, default=None,
help="If specified, uses the Dex-neRF version of depth with given thresh; else returns expected term")
group = parser.add_argument_group("misc experiments")
group.add_argument('--thresh_type',
choices=["weight", "sigma"],
default="weight",
help='Upsample threshold type')
group.add_argument('--weight_thresh', type=float,
default=0.0005 * 512,
# default=0.025 * 512,
help='Upsample weight threshold; will be divided by resulting z-resolution')
group.add_argument('--density_thresh', type=float,
default=5.0,
help='Upsample sigma threshold')
group.add_argument('--background_density_thresh', type=float,
default=1.0+1e-9,
help='Background sigma threshold for sparsification')
group.add_argument('--max_grid_elements', type=int,
default=44_000_000,
help='Max items to store after upsampling '
'(the number here is given for 22GB memory)')
group = parser.add_argument_group("losses")
# Foreground TV
group.add_argument('--lambda_tv', type=float, default=1e-5)
group.add_argument('--tv_sparsity', type=float, default=0.01)
group.add_argument('--tv_logalpha', action='store_true', default=False,
help='Use log(1-exp(-delta * sigma)) as in neural volumes')
group.add_argument('--lambda_tv_sh', type=float, default=1e-3)
group.add_argument('--tv_sh_sparsity', type=float, default=0.01)
group.add_argument('--lambda_tv_lumisphere', type=float, default=0.0)#1e-2)#1e-3)
group.add_argument('--tv_lumisphere_sparsity', type=float, default=0.01)
group.add_argument('--tv_lumisphere_dir_factor', type=float, default=0.0)
group.add_argument('--tv_decay', type=float, default=1.0)
group.add_argument('--lambda_l2_sh', type=float, default=0.0)#1e-4)
group.add_argument('--tv_early_only', type=int, default=1, help="Turn off TV regularization after the first split/prune")
group.add_argument('--tv_contiguous', type=int, default=1,
help="Apply TV only on contiguous link chunks, which is faster")
# End Foreground TV
group.add_argument('--lr_decay', action='store_true', default=True)
group.add_argument('--n_train', type=int, default=None, help='Number of training images. Defaults to use all avaiable.')
group.add_argument('--lambda_sparsity', type=float, default=
0.0,
help="Weight for sparsity loss as in SNeRG/PlenOctrees " +
"(but applied on the ray)")
group.add_argument('--lambda_beta', type=float, default=
0.0,
help="Weight for beta distribution sparsity loss as in neural volumes")
# ---------------- Finetune video related--------------
group = parser.add_argument_group("finetune")
group.add_argument('--pretrained', type=str, default=None,
help='pretrained model')
group.add_argument('--mask_grad_after_reg', type=int, default=1,
help='mask out unwanted gradient after TV and other regularization')
group.add_argument('--frame_start', type=int, default=1, help='train frame among [frame_start, frame_end]')
group.add_argument('--frame_end', type=int, default=30, help='train frame among [1, frame_end]')
group.add_argument('--fps', type=int, default=30, help='video save fps')
group.add_argument('--train_use_all', type=int, default=0 ,help='whether to use all image as training set')
group.add_argument('--save_every_frame', action='store_true', default=False)
group.add_argument('--dilate_rate_before', type=int, default=2, help="dilation rate for grid.links before training")
group.add_argument('--dilate_rate_after', type=int, default=2, help=" dilation rate for grid.links after training")
group.add_argument('--offset', type=int, default=250)
# fancy idea
group.add_argument('--compress_saving', action="store_true", default=False, help="dilation rate for grid.links")
group.add_argument('--sh_keep_thres', type=float, default=1)
group.add_argument('--sh_prune_thres', type=float, default=0.2)
group.add_argument('--performance_mode', action="store_true", default=False, help="use perfomance_mode skip any unecessary code ")
group.add_argument('--debug', action="store_true", default=False,help="switch on debug mode")
group.add_argument('--keep_rms_data', action="store_true", default=False,help="switch on debug mode")
group.add_argument('--apply_narrow_band', action="store_true", default=False,help="apply_narrow_band")
group.add_argument('--render_all', action="store_true", default=False,help="render all camera in sequence")
group.add_argument('--save_delta', action="store_true", default=False,help="save delta in compress saving")
args = parser.parse_args()
config_util.maybe_merge_config_file(args)
DEBUG = args.debug
assert args.lr_sigma_final <= args.lr_sigma, "lr_sigma must be >= lr_sigma_final"
assert args.lr_sh_final <= args.lr_sh, "lr_sh must be >= lr_sh_final"
os.makedirs(args.train_dir, exist_ok=True)
os.makedirs(os.path.join(args.train_dir, 'grid_delta'), exist_ok=True)
os.makedirs(os.path.join(args.train_dir, 'grid_delta_z'), exist_ok=True)
os.makedirs(os.path.join(args.train_dir, 'test_images'), exist_ok=True)
os.makedirs(os.path.join(args.train_dir, 'test_images_depth'), exist_ok=True)
logfolder = args.train_dir
if os.path.exists(f'{logfolder}/log_base.log'):
os.remove(f'{logfolder}/log_base.log')
logger.add(f'{logfolder}/log_base.log' , format="{level} {message}", level='DEBUG' if args.debug else 'INFO')
summary_writer = SummaryWriter(args.train_dir)
with open(path.join(args.train_dir, 'args.json'), 'w') as f:
json.dump(args.__dict__, f, indent=2)
# Changed name to prevent errors
shutil.copyfile(__file__, path.join(args.train_dir, 'train_frozen.py'))
torch.manual_seed(20200823)
np.random.seed(20200823)
assert os.path.exists(args.pretrained), "pretrained model not exist, please train the first frame!"
print("Load pretrained model from ", args.pretrained)
grid = svox2.SparseGrid.load(args.pretrained, device=device)
config_util.setup_render_opts(grid.opt, args)
print("Load pretrained model Done!")
from copy import deepcopy
from torch import nn
def grid_copy( old_grid: svox2.SparseGrid, device: Union[torch.device, str] = "cpu"):
"""
Load from path
"""
sh_data = old_grid.sh_data.clone()
density_data = old_grid.density_data.clone()
logger.debug(f"copy grid cap {(old_grid.links>=0).sum()}")
if hasattr(old_grid, "background_links") :
background_data = old_grid.background_data
background_links = old_grid.background_links
else:
background_data = None
background_links = None
links = old_grid.links.clone()
basis_dim = (sh_data.shape[1]) // 3
radius = deepcopy(old_grid.radius )
center = deepcopy(old_grid.center)
grid_new = svox2.SparseGrid(
1,
radius=radius,
center=center,
basis_dim=basis_dim,
use_z_order=False,
device="cpu",
basis_type=old_grid.basis_type ,
mlp_posenc_size=old_grid.mlp_posenc_size,
mlp_width=old_grid.mlp_width,
background_nlayers=0,
)
grid_new.sh_data = nn.Parameter(sh_data).to(device=device)
grid_new.density_data = nn.Parameter(density_data).to(device=device)
grid_new.links = links.to(device=device) # torch.from_numpy(links).to(device=device)
grid_new.capacity = grid_new.sh_data.size(0)
if args.keep_rms_data:
grid_new.sh_rms = old_grid.sh_rms
grid_new.density_rms = old_grid.density_rms
if background_data is not None:
background_data = torch.from_numpy(background_data).to(device=device)
grid_new.background_nlayers = background_data.shape[1]
grid_new.background_reso = background_links.shape[1]
grid_new.background_data = nn.Parameter(background_data)
grid_new.background_links = torch.from_numpy(background_links).to(device=device)
else:
grid_new.background_data.data = grid_new.background_data.data.to(device=device)
if grid_new.links.is_cuda:
grid_new.accelerate()
config_util.setup_render_opts(grid_new.opt, args)
logger.debug(f"grid copy finish")
return grid_new
def delete_area(grid, delet_mask):
new_mask = torch.logical_and(grid.links>=0, ~delet_mask)
delet_mask = delet_mask[grid.links>=0]
grid.density_data = nn.Parameter(grid.density_data[~delet_mask,:])
grid.sh_data = nn.Parameter(grid.sh_data[~delet_mask,:])
if args.keep_rms_data:
grid.sh_rms = None
grid.density_rms = None
new_links = torch.cumsum(new_mask.view(-1).to(torch.int32), dim=-1).int() - 1
new_links[~new_mask.view(-1)] = -1
grid.links = new_links.view(grid.links.shape)
@torch.no_grad()
def compress_saving(grid_pre, grid_next, grid_holder, save_delta=False,saving_name=None):
mask_pre = grid_pre.links>=0
mask_next = grid_next.links>=0
new_cap = mask_next.sum()
diff_area = torch.logical_xor(mask_pre, mask_next)
add_area = (diff_area & mask_next)
minus_area = (diff_area & mask_pre)
addition_density = grid_next.density_data[grid_next.links[add_area].long()]
addition_sh = grid_next.sh_data[grid_next.links[add_area].long()]
logger.debug(f"diff area: {diff_area.sum()} add area: {add_area.sum()} minus area: {minus_area.sum()} ")
remain_idx = grid_pre.links[mask_pre & ~ minus_area]
remain_idx = remain_idx.long()
remain_sh_data = grid_pre.sh_data[remain_idx]
remain_density_data = grid_pre.density_data[remain_idx]
new_sh_data = torch.zeros((new_cap,27), device=device).float()
new_density_data = torch.zeros((new_cap,1), device=device).float()
add_area_in_saprse = add_area[mask_next]
# we also save voxel where sh change a lot
next_sh_data = grid_next.sh_data[~add_area_in_saprse,:]
next_density_data = grid_next.density_data[~add_area_in_saprse,:]
part2_keep_area = (abs(next_sh_data - remain_sh_data).sum(-1) > args.sh_keep_thres)
keep_numel = part2_keep_area.sum()
add_numel = add_area.sum()
keep_percent = (keep_numel/new_cap) * 100
add_percent = (add_numel/new_cap) * 100
keep_size = (keep_numel*2*28)/(1024*1024)
add_size = (add_numel*2*28)/(1024*1024)
if save_delta:
save_dict = {'mask_next':mask_next,
'addition_density':addition_density,
'addition_sh':addition_sh,
'part2_keep_area':part2_keep_area,
'keep_density':next_density_data[part2_keep_area],
'keep_sh':next_sh_data[part2_keep_area]
}
save_path = os.path.join(args.train_dir,'grid_delta',f'{saving_name}.pth')
logger.info(f'svaing delta to : {save_path} ')
torch.save(save_dict, save_path)
logger.info(f"keep element: {keep_numel}/{keep_percent:.2f}/{keep_size:.2f} MB, add element: {add_numel}/{add_percent:.2f}/{add_size:.2f} MB")
if save_delta:
all_in_one = {
'mask_next':np.packbits(mask_next.cpu().numpy()),
'mask_keep':np.packbits(part2_keep_area.cpu().numpy()) ,
'addition_density':addition_density.cpu().numpy().astype(np.float16),
'addition_sh':addition_sh.cpu().numpy().astype(np.float16),
'keep_density':next_density_data[part2_keep_area].cpu().numpy().astype(np.float16),
'keep_sh':next_sh_data[part2_keep_area].cpu().numpy().astype(np.float16)
}
save_path = os.path.join(args.train_dir,'grid_delta_z',f'{saving_name}.npz')
np.savez_compressed(save_path, all_in_one)
logger.info(f'saving delta z to : {save_path}')
logger.info(f'saving size after compression: {os.path.getsize(save_path)/(1024*1024):.2f} MB')
remain_sh_data[part2_keep_area] = next_sh_data[part2_keep_area]
remain_density_data[part2_keep_area] = next_density_data[part2_keep_area]
new_sh_data[add_area_in_saprse,:] = addition_sh
new_density_data[add_area_in_saprse,:] = addition_density
new_sh_data[~add_area_in_saprse,:] = remain_sh_data
new_density_data[~add_area_in_saprse,:] = remain_density_data
# though new_links equal to grid_next.links, we still calculate a mask for better scalability
new_mask = torch.logical_or(add_area, mask_pre)
new_mask = torch.logical_and(new_mask, ~minus_area)
new_links = torch.cumsum(new_mask.view(-1).to(torch.int32), dim=-1).int() - 1
new_links[~new_mask.view(-1)] = -1
grid_holder.sh_data = nn.Parameter(new_sh_data)
grid_holder.density_data = nn.Parameter(new_density_data)
grid_holder.links = new_links.view(grid_next.links.shape).to(device=device)
if args.keep_rms_data:
grid_holder.sh_rms = grid_next.sh_rms
grid_holder.density_rms = grid_next.density_rms
logger.debug(f"compress saving finish")
return grid_holder
def dilated_voxel_grid(dilate_rate = 2):
active_mask = grid.links >= 0
dilate_before = active_mask
for i in range(dilate_rate):
active_mask = _C.dilate(active_mask)
# reactivate = torch.logical_xor(active_mask, dilate_before)
new_cap = active_mask.sum()
previous_sparse_area = dilate_before[active_mask]
new_density = torch.zeros((new_cap,1), device=device).float()
new_sh = torch.zeros((new_cap, grid.basis_dim*3), device=device).float()
new_density[previous_sparse_area,:] = grid.density_data.data
new_sh[previous_sparse_area,:] = grid.sh_data.data
active_mask = active_mask.view(-1)
new_links = torch.cumsum(active_mask.to(torch.int32), dim=-1).int() - 1
new_links[~active_mask] = -1
grid.density_data = torch.nn.Parameter(new_density)
grid.sh_data = torch.nn.Parameter(new_sh)
grid.links = new_links.view(grid.links.shape).to(device=device)
def sparsify_voxel_grid(grid, factor=[1,1,1],dilate=2):
reso = grid.links.shape
reso = [int(r * fac) for r, fac in zip(reso, factor)]
grid.resample(reso=reso,
sigma_thresh=args.density_thresh,
weight_thresh=0.0,
dilate=dilate,
cameras= None,
max_elements=args.max_grid_elements,
accelerate=False)
if args.dilate_rate_after > 0:
logger.debug("sparsify first!!!!")
sparsify_voxel_grid(grid,dilate=args.dilate_rate_after)
# LR related
lr_sigma_func = get_expon_lr_func(args.lr_sigma, args.lr_sigma_final, args.lr_sigma_delay_steps,
args.lr_sigma_delay_mult, args.lr_sigma_decay_steps)
lr_sh_func = get_expon_lr_func(args.lr_sh, args.lr_sh_final, args.lr_sh_delay_steps,
args.lr_sh_delay_mult, args.lr_sh_decay_steps)
lr_sigma_factor = 1.0
lr_sh_factor = 1.0
grid_raw = grid_copy(grid, device=device)
from torch.multiprocessing import Queue, Process
from queue import Empty
frame_idx_queue = Queue()
dset_queue = Queue()
def pre_fetch_dataset():
while True:
try:
frame_idx = frame_idx_queue.get(block=True,timeout=60)
except Empty:
logger.debug('ending data prefetch process')
return
data_dir = os.path.join(args.data_dir, f'{frame_idx:04d}')
train_dir = args.train_dir
factor = 1
dset_train = datasets[args.dataset_type](
data_dir,
split="train",
device=device,
factor=factor,
n_images=args.n_train,
train_dir = train_dir,
train_use_all=args.train_use_all,
offset=args.offset,
verbose=False,
**config_util.build_data_options(args))
# dataset used to render test image, can include training camera for better visualization
dset_test = datasets[args.dataset_type](
data_dir, split= 'train' if args.render_all else "test", train_use_all=1 if args.render_all else 0,offset=args.offset, verbose=False, **config_util.build_data_options(args))
# # dataset used for PSNR caculation
dset_eval = datasets[args.dataset_type](
data_dir, split="test", train_use_all=0,offset=args.offset, verbose=False, **config_util.build_data_options(args))
logger.debug(f"finish loading frame:{frame_idx}")
dset_queue.put((dset_train,dset_test, dset_eval))
return dset_train, dset_test, dset_eval
def pre_fetch_dataset_standalone(frame_idx):
data_dir = os.path.join(args.data_dir, f'{frame_idx:04d}')
train_dir = args.train_dir
factor = 1
dset_train = datasets[args.dataset_type](
data_dir,
split="train",
device=device,
factor=factor,
n_images=args.n_train,
train_dir = train_dir,
train_use_all=args.train_use_all,
offset=args.offset,
verbose=False,
**config_util.build_data_options(args))
# dataset used to render test image, can include training camera for better visualization
dset_test = datasets[args.dataset_type](
data_dir, split= 'train' if args.render_all else "test", train_use_all=1 if args.render_all else 0,offset=args.offset, verbose=False, **config_util.build_data_options(args))
# # dataset used for PSNR caculation
dset_eval = datasets[args.dataset_type](
data_dir, split="test", train_use_all=0,offset=args.offset, verbose=False, **config_util.build_data_options(args))
logger.debug(f"finish loading frame:{frame_idx}")
return dset_train, dset_test, dset_eval
def deploy_dset(dset):
dset.c2w = torch.from_numpy(dset.c2w)
dset.gt = torch.from_numpy(dset.gt).float()
if not dset.is_train_split:
dset.render_c2w = torch.from_numpy(dset.render_c2w)
else:
dset.gen_rays()
return dset
def finetune_one_frame(frame_idx, global_step_base, dsets):
if args.compress_saving:
grid_pre = grid_copy(old_grid = grid, device=device)
with torch.no_grad():
if args.apply_narrow_band:
active_mask = grid.links>= 0
dmask = active_mask.clone()
for _ in range(args.dilate_rate_before):
dmask = _C.dilate(dmask)
emask = ~active_mask
for _ in range(6):
emask = _C.dilate(emask)
emask = ~emask
narrow_band = torch.logical_xor(dmask, emask)
if args.dilate_rate_before > 0:
dilated_voxel_grid(dilate_rate=args.dilate_rate_before)
if args.apply_narrow_band:
grad_mask = narrow_band[grid.links>=0]
grad_mask = grad_mask.view(-1)
else:
grad_mask = (torch.ones([1]).float().cuda() == 1)
train_dir = args.train_dir
dset_train, dset_test, dset_eval = dsets
dset_train = deploy_dset(dset_train)
dset_test = deploy_dset(dset_test)
dset_eval = deploy_dset(dset_eval)
epoch_id = -1
global_start_time = datetime.now()
gstep_id_base = 0
shuffle_step = args.n_iters
dset_train.epoch_size = shuffle_step * args.batch_size
timer_dict = {'forward':0, 'regularization':0, 'optimization':0,'preparation':0,'narrowband':0}
max_step = args.n_iters * (10 if frame_idx == 0 else 1)
grid.accelerate()
for gstep_id in tqdm(range(0, max_step)):
if gstep_id==0 or gstep_id % shuffle_step == 0:
with torch.no_grad():
dset_train.shuffle_rays()
logger.debug('shuffle')
def train_step(timer_dict):
#============================= ray preparation stage =============================
tic = time.time()
stats = {"mse" : 0.0, "psnr" : 0.0, "invsqr_mse" : 0.0}
bstep_id = gstep_id % shuffle_step
batch_begin = bstep_id * args.batch_size
lr_sigma = lr_sigma_func(gstep_id) * lr_sigma_factor
lr_sh = lr_sh_func(gstep_id) * lr_sh_factor
if not args.lr_decay:
lr_sigma = args.lr_sigma * lr_sigma_factor
lr_sh = args.lr_sh * lr_sh_factor
batch_end = batch_begin + args.batch_size
batch_origins = dset_train.rays.origins[batch_begin: batch_end]
batch_dirs = dset_train.rays.dirs[batch_begin: batch_end]
rgb_gt = dset_train.rays.gt[batch_begin: batch_end]
rays = svox2.Rays(batch_origins, batch_dirs)
if args.debug:
torch.cuda.synchronize()
timer_dict['preparation'] += (time.time() - tic)
#============================= forward stage =============================
tic = time.time()
rgb_pred = grid.volume_render_fused(rays, rgb_gt,
beta_loss=args.lambda_beta,
sparsity_loss=args.lambda_sparsity,
randomize=args.enable_random)
if args.debug:
torch.cuda.synchronize()
timer_dict['forward'] += (time.time() - tic)
if not args.performance_mode:
with torch.no_grad():
mse = F.mse_loss(rgb_gt, rgb_pred)
mse_num : float = mse.detach().item()
psnr = -10.0 * math.log10(mse_num)
stats['mse'] += mse_num
stats['psnr'] += psnr
stats['invsqr_mse'] += 1.0 / mse_num ** 2
if (gstep_id + 1) % args.print_every == 0:
for stat_name in stats:
stat_val = stats[stat_name] / args.print_every
summary_writer.add_scalar(stat_name, stat_val, global_step=gstep_id+global_step_base)
stats[stat_name] = 0.0
summary_writer.add_scalar("lr_sh", lr_sh, global_step=gstep_id+global_step_base)
summary_writer.add_scalar("lr_sigma", lr_sigma, global_step=gstep_id+global_step_base)
#============================= regularization stage =============================
tic = time.time()
# Apply TV/Sparsity regularizers
if args.lambda_tv > 0.0:
# with Timing("tv_inpl"):
grid.inplace_tv_grad(grid.density_data.grad,
scaling=args.lambda_tv,
sparse_frac=args.tv_sparsity ,
logalpha=args.tv_logalpha,
ndc_coeffs=dset_train.ndc_coeffs,
contiguous=args.tv_contiguous)
if args.lambda_tv_sh > 0.0:
# with Timing("tv_color_inpl"):
grid.inplace_tv_color_grad(grid.sh_data.grad,
scaling=args.lambda_tv_sh,
sparse_frac=args.tv_sh_sparsity,
ndc_coeffs=dset_train.ndc_coeffs,
contiguous=args.tv_contiguous)
if args.lambda_tv_lumisphere > 0.0:
grid.inplace_tv_lumisphere_grad(grid.sh_data.grad,
scaling=args.lambda_tv_lumisphere,
dir_factor=args.tv_lumisphere_dir_factor,
sparse_frac=args.tv_lumisphere_sparsity,
ndc_coeffs=dset_train.ndc_coeffs)
if args.lambda_l2_sh > 0.0:
grid.inplace_l2_color_grad(grid.sh_data.grad,
scaling=args.lambda_l2_sh)
if args.debug:
torch.cuda.synchronize()
timer_dict['regularization'] += (time.time() - tic)
#============================= narrow band stage =============================
tic = time.time()
grid.sparse_sh_grad_indexer &= grad_mask
grid.sparse_grad_indexer &= grad_mask
if args.debug:
torch.cuda.synchronize()
timer_dict['narrowband'] += (time.time() - tic)
#============================= optimization stage =============================
tic = time.time()
grid.optim_density_step(lr_sigma, beta=args.rms_beta, optim=args.sigma_optim)
grid.optim_sh_step(lr_sh, beta=args.rms_beta, optim=args.sh_optim)
if args.debug:
torch.cuda.synchronize()
timer_dict['optimization'] += (time.time() - tic)
def eval_step():
with torch.no_grad():
stats_test = {'mse' : 0.0, 'psnr' : 0.0}
# Standard set
N_IMGS_TO_EVAL = min(20 if epoch_id > 0 else 5, dset_eval.n_images)
N_IMGS_TO_SAVE = N_IMGS_TO_EVAL # if not args.tune_mode else 1
img_eval_interval = dset_eval.n_images // N_IMGS_TO_EVAL
img_save_interval = (N_IMGS_TO_EVAL // N_IMGS_TO_SAVE)
img_ids = range(0, dset_eval.n_images, img_eval_interval)
n_images_gen = 0
for i, img_id in tqdm(enumerate(img_ids), total=len(img_ids)):
c2w = dset_eval.c2w[img_id].to(device=device)
cam = svox2.Camera(c2w,
dset_eval.intrins.get('fx', img_id),
dset_eval.intrins.get('fy', img_id),
dset_eval.intrins.get('cx', img_id),
dset_eval.intrins.get('cy', img_id),
width=dset_eval.get_image_size(img_id)[1],
height=dset_eval.get_image_size(img_id)[0],
ndc_coeffs=dset_eval.ndc_coeffs)
rgb_pred_test = grid.volume_render_image(cam, use_kernel=True)
rgb_gt_test = dset_eval.gt[img_id].to(device=device)
all_mses = ((rgb_gt_test - rgb_pred_test) ** 2).cpu()
if i % img_save_interval == 0:
img_pred = rgb_pred_test.cpu()
img_pred.clamp_max_(1.0)
summary_writer.add_image(f'test/image_{img_id:04d}',
img_pred, global_step=frame_idx, dataformats='HWC')
if args.log_mse_image:
mse_img = all_mses / all_mses.max()
summary_writer.add_image(f'test/mse_map_{img_id:04d}',
mse_img, global_step=frame_idx, dataformats='HWC')
if False or args.log_depth_map:
depth_img = grid.volume_render_depth_image(cam,
args.log_depth_map_use_thresh if
args.log_depth_map_use_thresh else None
)
depth_img = viridis_cmap(depth_img.cpu())
summary_writer.add_image(f'test/depth_map_{img_id:04d}',
depth_img,
global_step=frame_idx, dataformats='HWC')
rgb_pred_test = rgb_gt_test = None
mse_num : float = all_mses.mean().item()
psnr = -10.0 * math.log10(mse_num)
if math.isnan(psnr):
print('NAN PSNR', i, img_id, mse_num)
assert False
stats_test['mse'] += mse_num
stats_test['psnr'] += psnr
n_images_gen += 1
stats_test['mse'] /= n_images_gen
stats_test['psnr'] /= n_images_gen
for stat_name in stats_test:
summary_writer.add_scalar('test/' + stat_name,
stats_test[stat_name], global_step=gstep_id_base+global_step_base)
summary_writer.add_scalar('epoch_id', float(epoch_id), global_step=gstep_id_base+global_step_base)
print('eval stats:', stats_test)
logger.critical(f"per_frame_psnr: {frame_idx} {psnr}")
return psnr
if args.debug:
torch.cuda.synchronize()
tic = time.time()
train_step(timer_dict)
if args.debug:
torch.cuda.synchronize()
if gstep_id == max_step - 1:
global_stop_time = datetime.now()
line = ''
for k,v in timer_dict.items():
line += f'{k}:sum: {v:.3f} sec / avg:{(v*1000)/max_step:.3f} ms, '
logger.info(line)
secs = (global_stop_time - global_start_time).total_seconds()
logger.info(f'cost: {secs}, s')
psnr = eval_step()
break
if args.dilate_rate_after or args.dilate_rate_before:
sparsify_voxel_grid(grid, dilate=args.dilate_rate_after)
@torch.no_grad()
def preprune(grid_pre, grid_next):
mask_pre = grid_pre.links>=0
mask_next = grid_next.links>=0
new_cap = mask_next.sum()
diff_area = torch.logical_xor(mask_pre, mask_next)
add_area = (diff_area & mask_next)
minus_area = (diff_area & mask_pre)
logger.info(f"diff area before preprune: {diff_area.sum()} add area: {add_area.sum()} minus area: {minus_area.sum()} ")
addition_density = grid_next.density_data[grid_next.links[add_area].long()]
addition_sh = grid_next.sh_data[grid_next.links[add_area].long()]
no_need_area = (abs(addition_sh).sum(-1)<args.sh_prune_thres)
add_area[add_area.clone()] = no_need_area
delete_area(grid_next, add_area.view(grid_next.links.shape))
if args.compress_saving:
preprune(grid_pre, grid)
compress_saving(grid_pre=grid_pre, grid_next=grid, grid_holder=grid, save_delta=args.save_delta,saving_name=f'{frame_idx:04d}')
def render_img():
c2ws = dset_test.c2w.to(device=device)
n_images = dset_test.n_images
img_eval_interval = 1
for img_id in tqdm(range(0, n_images, img_eval_interval)):
dset_h, dset_w = dset_test.get_image_size(img_id)
im_size = dset_h * dset_w
w = dset_w #if args.crop == 1.0 else int(dset_w * args.crop)
h = dset_h #if args.crop == 1.0 else int(dset_h * args.crop)
if args.render_all:
im_path = os.path.join(train_dir, 'test_images', f'{frame_idx:04d}_{img_id:02d}.png' )
depth_path = os.path.join(train_dir, 'test_images_depth', f'{frame_idx:04d}_{img_id:02d}.png' )
else:
im_path = os.path.join(train_dir, 'test_images', f'{frame_idx:04d}.png' )
cam = svox2.Camera(c2ws[img_id],
dset_test.intrins.get('fx', img_id),
dset_test.intrins.get('fy', img_id),
dset_test.intrins.get('cx', img_id) + (w - dset_w) * 0.5,
dset_test.intrins.get('cy', img_id) + (h - dset_h) * 0.5,
w, h,
ndc_coeffs=dset_test.ndc_coeffs)
tic = time.time()
im = grid.volume_render_image(cam, use_kernel=True, return_raylen=False)
if DEBUG:
torch.cuda.synchronize()
logger.debug(f'rgb rendeing time: {time.time() - tic}')
im.clamp_(0.0, 1.0)
im = im.cpu().numpy()
im = (im * 255).astype(np.uint8)
imageio.imwrite(im_path, im)
if not args.render_all:
break
return im
with torch.no_grad():
return render_img(), psnr
train_start_time = datetime.now()
train_frame_num = 0
global_step_base = 0
frames = []
psnr_list = []
pre_fetch_process = Process(target=pre_fetch_dataset)
pre_fetch_process.start()
prefetch_factor = 3
for i in range(prefetch_factor):
frame_idx_queue.put(i+args.frame_start)
for frame_idx in range(args.frame_start, args.frame_end) :
# dset = dset_iter[frame_idx - args.frame_start]
dset = dset_queue.get(block=True)
if frame_idx + prefetch_factor < args.frame_end:
frame_idx_queue.put(frame_idx + prefetch_factor)
frame, psnr = finetune_one_frame(frame_idx, global_step_base, dset)
frames.append(frame)
psnr_list.append(psnr)
if args.save_every_frame:
os.makedirs(os.path.join(args.train_dir,"ckpts"))
grid.save(os.path.join(args.train_dir,"ckpts",f'{frame_idx:04d}.npz'))
global_step_base += args.n_iters
train_frame_num += 1
logger.critical(f'average psnr {sum(psnr_list)/len(psnr_list):.4f}')
if train_frame_num:
tag = os.path.basename(args.train_dir)
vid_path = os.path.join(args.train_dir, tag+'.mp4')
# dep_vid_path = os.path.join(args.train_dir, 'render_depth.mp4')
imageio.mimwrite(vid_path, frames, fps=args.fps, macro_block_size=8)
logger.info('video write to', vid_path)
grid.density_rms = torch.zeros([1])
grid.sh_rms = torch.zeros([1])
grid.save(os.path.join(args.train_dir, 'ckpt.npz'))
pre_fetch_process.join()
pre_fetch_process.close()