In addition to full reproduction code, we provide a collection of pretrained models with an ML-Decoder classification head.
Backbone | Input Size | Dataset | mAP |
---|---|---|---|
TResNet_M | 224 | MS-COCO | 84.2 |
TResNet_L | 448 | MS-COCO | 90.1 |
TResNet_XL | 640 | MS-COCO | 91.4 |
TResNet_M | 224 | OpenImages | 86.8 |
TResNet_L | 384 | Stanford-Cars | 96.41 |
After downloading the models, you can validate their MS-COCO scores using the following script:
python validate.py \
--model-name=tresnet_l \
--model-path=./models_zoo/tresnet_l_COCO__448_90_0.pth \
--image-size=448 \
--data=/home/MSCOCO_2014/
We also provide an inference code, that demonstrate how to load our model, pre-process an image and do actuall inference. Example run of MS-COCO model (after downloading the relevant model):
python infer.py \
--model-name=tresnet_l \
--model-path=./models_zoo/tresnet_l_COCO__448_90_0.pth \
--pic-path=./pics/000000000885.jpg \
--image-size=448
which will result in:
python infer.py \
--model-name=tresnet_m \
--model-path=./models_zoo/tresnet_m_open_images_200_groups_86_8.pth \
--pic-path=./pics/000000000885.jpg \
--image-size=224 \
--num-of-groups=200 \
--num-classes=9605 \
--th=0.97
which will result in: