forked from kentonl/e2e-coref
-
Notifications
You must be signed in to change notification settings - Fork 0
/
singleton.py
executable file
·65 lines (53 loc) · 1.99 KB
/
singleton.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#!/usr/bin/env python
import os
import sys
sys.path.append(os.getcwd())
import json
import time
import random
import numpy as np
import tensorflow as tf
import coref_model as cm
import util
if __name__ == "__main__":
if len(sys.argv) > 1:
name = sys.argv[1]
else:
name = os.environ["EXP"]
config = util.get_config("experiments.conf")[name]
report_frequency = config["report_frequency"]
config["log_dir"] = util.mkdirs(os.path.join(config["log_root"], name))
util.print_config(config)
if "GPU" in os.environ:
util.set_gpus(int(os.environ["GPU"]))
else:
util.set_gpus()
model = cm.CorefModel(config)
saver = tf.train.Saver()
init_op = tf.global_variables_initializer()
log_dir = config["log_dir"]
writer = tf.summary.FileWriter(os.path.join(log_dir, "train"), flush_secs=20)
# Create a "supervisor", which oversees the training process.
sv = tf.train.Supervisor(logdir=log_dir,
init_op=init_op,
saver=saver,
global_step=model.global_step,
save_model_secs=120)
# The supervisor takes care of session initialization, restoring from
# a checkpoint, and closing when done or an error occurs.
with sv.managed_session() as session:
model.start_enqueue_thread(session)
accumulated_loss = 0.0
initial_time = time.time()
while not sv.should_stop():
tf_loss, tf_global_step, _ = session.run([model.loss, model.global_step, model.train_op])
accumulated_loss += tf_loss
if tf_global_step % report_frequency == 0:
total_time = time.time() - initial_time
steps_per_second = tf_global_step / total_time
average_loss = accumulated_loss / report_frequency
print "[{}] loss={:.2f}, steps/s={:.2f}".format(tf_global_step, average_loss, steps_per_second)
writer.add_summary(util.make_summary({"loss": average_loss}), tf_global_step)
accumulated_loss = 0.0
# Ask for all the services to stop.
sv.stop()