forked from xobs/netv2-fpga
-
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmmcm.c
871 lines (759 loc) · 34.8 KB
/
mmcm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
#include <stdio.h>
#include <generated/csr.h>
#include "mmcm.h"
#define MMCM_TIMEOUT 1000000
/*
* Despite varying pixel clocks, we must keep the PLL VCO operating
* in the specified range of 600MHz - 1200MHz.
*/
#ifdef CSR_HDMI_OUT0_BASE
void hdmi_out0_mmcm_write(int adr, int data) {
hdmi_out0_driver_clocking_mmcm_adr_write(adr);
hdmi_out0_driver_clocking_mmcm_dat_w_write(data);
hdmi_out0_driver_clocking_mmcm_write_write(1);
while(!hdmi_out0_driver_clocking_mmcm_drdy_read());
}
int hdmi_out0_mmcm_read(int adr) {
hdmi_out0_driver_clocking_mmcm_adr_write(adr);
hdmi_out0_driver_clocking_mmcm_read_write(1);
while(!hdmi_out0_driver_clocking_mmcm_drdy_read());
return hdmi_out0_driver_clocking_mmcm_dat_r_read();
}
#endif
#ifdef CSR_HDMI_IN0_BASE
void hdmi_in0_clocking_mmcm_write(int adr, int data) {
int timeout = 0;
hdmi_in0_clocking_mmcm_adr_write(adr);
hdmi_in0_clocking_mmcm_dat_w_write(data);
hdmi_in0_clocking_mmcm_write_write(1);
while(!hdmi_in0_clocking_mmcm_drdy_read() && timeout < MMCM_TIMEOUT)
timeout++;
if( timeout >= MMCM_TIMEOUT ) {
printf("hdmi_in0_clocking_mmcm_write failed with adr %x, data %x\n", adr, data);
}
}
int hdmi_in0_clocking_mmcm_read(int adr) {
int timeout = 0;
hdmi_in0_clocking_mmcm_adr_write(adr);
hdmi_in0_clocking_mmcm_read_write(1);
while(!hdmi_in0_clocking_mmcm_drdy_read() && timeout < MMCM_TIMEOUT)
timeout++;
if( timeout >= MMCM_TIMEOUT ) {
printf("hdmi_in0_clocking_mmcm_read failed with adr %x\n", adr);
}
return hdmi_in0_clocking_mmcm_dat_r_read();
}
#ifdef CSR_HDMI_IN0_CLOCKING_MMCM_DRDY_O_ADDR
void hdmi_in0_clocking_mmcm_write_o(int adr, int data) {
int timeout = 0;
hdmi_in0_clocking_mmcm_adr_write(adr);
hdmi_in0_clocking_mmcm_dat_w_write(data);
hdmi_in0_clocking_mmcm_write_o_write(1);
while(!hdmi_in0_clocking_mmcm_drdy_o_read() && timeout < MMCM_TIMEOUT)
timeout++;
if( timeout >= MMCM_TIMEOUT ) {
printf("hdmi_in0_clocking_mmcm_write_o failed with adr %x, data %x\n", adr, data);
}
}
int hdmi_in0_clocking_mmcm_read_o(int adr) {
int timeout = 0;
hdmi_in0_clocking_mmcm_adr_write(adr);
hdmi_in0_clocking_mmcm_read_o_write(1);
while(!hdmi_in0_clocking_mmcm_drdy_o_read() && timeout < MMCM_TIMEOUT)
timeout++;
if( timeout >= MMCM_TIMEOUT ) {
printf("hdmi_in0_clocking_mmcm_read_o failed with adr %x\n", adr);
}
return hdmi_in0_clocking_mmcm_dat_o_r_read();
}
#endif
static void hdmi_in_0_config_30_60mhz(void) {
hdmi_in0_clocking_mmcm_write(0x14, 0x1000 | (10<<6) | 10); /* clkfbout_mult = 20 */
hdmi_in0_clocking_mmcm_write(0x08, 0x1000 | (10<<6) | 10); /* clkout0_divide = 20 */
hdmi_in0_clocking_mmcm_write(0x0a, 0x1000 | (8<<6) | 8); /* clkout1_divide = 16 */
hdmi_in0_clocking_mmcm_write(0x0c, 0x1000 | (2<<6) | 2); /* clkout2_divide = 4 */
hdmi_in0_clocking_mmcm_write(0x0d, 0); /* clkout2_divide = 4 */
}
static void hdmi_in_0_config_60_120mhz(void) {
hdmi_in0_clocking_mmcm_write(0x14, 0x1000 | (5<<6) | 5); /* clkfbout_mult = 10 */
hdmi_in0_clocking_mmcm_write(0x08, 0x1000 | (5<<6) | 5); /* clkout0_divide = 10 */
hdmi_in0_clocking_mmcm_write(0x0a, 0x1000 | (4<<6) | 4); /* clkout1_divide = 8 */
hdmi_in0_clocking_mmcm_write(0x0c, 0x1000 | (1<<6) | 1); /* clkout2_divide = 2 */
hdmi_in0_clocking_mmcm_write(0x0d, 0); /* clkout2_divide = 2 */
// lock/filter parameters derived from these VCO settings for 720p:
/* p_BANDWIDTH="OPTIMIZED", i_RST=self._mmcm_reset.storage, o_LOCKED=mmcm_locked,
# VCO
p_REF_JITTER1=0.01, p_CLKIN1_PERIOD=13.5, #6.734, 7.2
p_CLKFBOUT_MULT_F=10.0, p_CLKFBOUT_PHASE=0.000, p_DIVCLK_DIVIDE=1,
i_CLKIN1=clk_input_bufr, i_CLKFBIN=mmcm_fb_o, o_CLKFBOUT=mmcm_fb, */
hdmi_in0_clocking_mmcm_write(0x18, 0x3e8); // lock register 1
hdmi_in0_clocking_mmcm_write(0x19, (0x0 << 15) | (0x1c << 10) | 0x3001); // lock register 2
hdmi_in0_clocking_mmcm_write(0x1A, (0x1 << 15) | (0x1c << 10) | 0x33e9); // lock register 3
hdmi_in0_clocking_mmcm_write(0x4E, (0x1 << 15) | (0x3 << 11) | (0x1 << 8) | 0x8); // filter register 1, reserved[7:0] is 0x8
hdmi_in0_clocking_mmcm_write(0x4F, (0x2 << 11) | (0x2 << 7) | (0x0 << 4) | 0x8); // filter register 2, reserved[7:0] is 0x8
#ifdef CSR_HDMI_IN0_CLOCKING_MMCM_DRDY_O_ADDR
hdmi_in0_clocking_mmcm_write_o(0x14, 0x1000 | (5<<6) | 5); /* clkfbout_mult = 10 */
hdmi_in0_clocking_mmcm_write_o(0x15, 0); /* clkfbout_mult = 10 (edge = 0) */
hdmi_in0_clocking_mmcm_write_o(0x08, 0x1000 | (5<<6) | 5); /* clkout0_divide = 10 */
hdmi_in0_clocking_mmcm_write_o(0x09, 0) ; /* clkout0_divide = 10 (edge = 0) */
// clkout1 is not used
hdmi_in0_clocking_mmcm_write_o(0x0c, 0x1000 | (1<<6) | 1); /* clkout2_divide = 2 */
hdmi_in0_clocking_mmcm_write_o(0x0d, 0); /* clkout2_divide = 2 */
// lock/filter parameters derived from these VCO settings for 1080p, low bandwidth:
/* p_BANDWIDTH="LOW", i_RST=self._mmcm_reset.storage, o_LOCKED=mmcm_locked_o,
# VCO
p_REF_JITTER1=0.01, p_CLKIN1_PERIOD=6.734,
p_CLKFBOUT_MULT=10, p_CLKFBOUT_PHASE=0.000, p_DIVCLK_DIVIDE=1, # PLL range is 800-1866 MHz, unlike MMCM which is 600-1440 MHz
i_CLKIN1=mmcm_clk0, # uncompensated delay for best phase match between master/slave
i_CLKFBIN=mmcm_fb2_o, o_CLKFBOUT=mmcm_fb2_o, */
hdmi_in0_clocking_mmcm_write_o(0x18, 0x3e8); // lock register 1
hdmi_in0_clocking_mmcm_write_o(0x19, (0x0 << 15) | (0x1c << 10) | 0x3001); // lock register 2
hdmi_in0_clocking_mmcm_write_o(0x1A, (0x1 << 15) | (0x1c << 10) | 0x33e9); // lock register 3
// FiltReg1: table[9]:0x0 (r):0x0 table[8:7]:0x1 (r):0x0 table[6]:0x0 (r):0x8
hdmi_in0_clocking_mmcm_write_o(0x4E, (0x0 << 15) | (0x1 << 11) | (0x0 << 8) | 0x8); // filter register 1, reserved[7:0] is 0x8
// FiltReg2: table[5]:0x0 (r):0x0 table[4:3]:0x0 (r):0x0 table[2:1]:0x2 (r):0x0 table[0]:0x0 (r):0x8
hdmi_in0_clocking_mmcm_write_o(0x4F, (0x0 << 11) | (0x2 << 7) | (0x0 << 4) | 0x8); // filter register 2, reserved[7:0] is 0x8
#endif
}
static void hdmi_in_0_config_120_240mhz(void) {
hdmi_in0_clocking_mmcm_write(0x14, 0x1000 | (2<<6) | 3); /* clkfbout_mult = 5 (2/3) */
hdmi_in0_clocking_mmcm_write(0x15, 1 << 7); /* clkfbout_mult = 5 (edge = 1) */
hdmi_in0_clocking_mmcm_write(0x08, 0x1000 | (2<<6) | 3); /* clkout0_divide = 5 (2/3) */
hdmi_in0_clocking_mmcm_write(0x09, 1 << 7); /* clkout0_divide = 5 (edge = 1) */
hdmi_in0_clocking_mmcm_write(0x0a, 0x1000 | (2<<6) | 2); /* clkout1_divide = 4 */
hdmi_in0_clocking_mmcm_write(0x0c, 0x1000 | (0<<6) | 0); /* clkout2_divide = 1 */
hdmi_in0_clocking_mmcm_write(0x0d, (1<<6)); /* clkout2_divide = 1 */
// lock/filter parameters derived from these VCO settings for 1080p, low bandwidth:
/* p_BANDWIDTH="OPTIMIZED", i_RST=self._mmcm_reset.storage, o_LOCKED=mmcm_locked,
# VCO
p_REF_JITTER1=0.01, p_CLKIN1_PERIOD=6.734,
p_CLKFBOUT_MULT_F=10.0, p_CLKFBOUT_PHASE=0.000, p_DIVCLK_DIVIDE=1,
i_CLKIN1=clk_input_bufr, i_CLKFBIN=mmcm_fb_o, o_CLKFBOUT=mmcm_fb, */
hdmi_in0_clocking_mmcm_write(0x18, 0x3e8); // lock register 1
hdmi_in0_clocking_mmcm_write(0x19, (0x0 << 15) | (0xe << 10) | 0x3801); // lock register 2
hdmi_in0_clocking_mmcm_write(0x1A, (0x1 << 15) | (0xe << 10) | 0x3be9); // lock register 3
hdmi_in0_clocking_mmcm_write(0x4E, (0x0 << 15) | (0x1 << 11) | (0x0 << 8) | 0x8); // filter register 1, reserved[7:0] is 0x8
hdmi_in0_clocking_mmcm_write(0x4F, (0x3 << 11) | (0x2 << 7) | (0x0 << 4) | 0x8); // filter register 2, reserved[7:0] is 0x8
#ifdef CSR_HDMI_IN0_CLOCKING_MMCM_DRDY_O_ADDR // PLLE2 demands to configure at x10 even at high frequency
hdmi_in0_clocking_mmcm_write_o(0x14, 0x1000 | (5<<6) | 5); /* clkfbout_mult = 10 */
hdmi_in0_clocking_mmcm_write_o(0x15, 0); /* clkfbout_mult = 10 (edge = 0) */
hdmi_in0_clocking_mmcm_write_o(0x08, 0x1000 | (5<<6) | 5); /* clkout0_divide = 10 */
hdmi_in0_clocking_mmcm_write_o(0x09, 0) ; /* clkout0_divide = 10 (edge = 0) */
// clkout1 is not used
hdmi_in0_clocking_mmcm_write_o(0x0c, 0x1000 | (1<<6) | 1); /* clkout2_divide = 2 */
hdmi_in0_clocking_mmcm_write_o(0x0d, 0); /* clkout2_divide = 2 */
// lock/filter parameters derived from these VCO settings for 1080p, low bandwidth:
/* p_BANDWIDTH="LOW", i_RST=self._mmcm_reset.storage, o_LOCKED=mmcm_locked_o,
# VCO
p_REF_JITTER1=0.01, p_CLKIN1_PERIOD=6.734,
p_CLKFBOUT_MULT=10, p_CLKFBOUT_PHASE=0.000, p_DIVCLK_DIVIDE=1, # PLL range is 800-1866 MHz, unlike MMCM which is 600-1440 MHz
i_CLKIN1=mmcm_clk0, # uncompensated delay for best phase match between master/slave
i_CLKFBIN=mmcm_fb2_o, o_CLKFBOUT=mmcm_fb2_o, */
hdmi_in0_clocking_mmcm_write_o(0x18, 0x3e8); // lock register 1
hdmi_in0_clocking_mmcm_write_o(0x19, (0x0 << 15) | (0x1c << 10) | 0x3001); // lock register 2
hdmi_in0_clocking_mmcm_write_o(0x1A, (0x1 << 15) | (0x1c << 10) | 0x33e9); // lock register 3
// FiltReg1: table[9]:0x0 (r):0x0 table[8:7]:0x1 (r):0x0 table[6]:0x0 (r):0x8
hdmi_in0_clocking_mmcm_write_o(0x4E, (0x0 << 15) | (0x1 << 11) | (0x0 << 8) | 0x8); // filter register 1, reserved[7:0] is 0x8
// FiltReg2: table[5]:0x0 (r):0x0 table[4:3]:0x0 (r):0x0 table[2:1]:0x2 (r):0x0 table[0]:0x0 (r):0x8
hdmi_in0_clocking_mmcm_write_o(0x4F, (0x0 << 11) | (0x2 << 7) | (0x0 << 4) | 0x8); // filter register 2, reserved[7:0] is 0x8
#endif
}
#endif
#ifdef CSR_HDMI_IN1_BASE
void hdmi_in1_clocking_mmcm_write(int adr, int data) {
int timeout = 0;
hdmi_in1_clocking_mmcm_adr_write(adr);
hdmi_in1_clocking_mmcm_dat_w_write(data);
hdmi_in1_clocking_mmcm_write_write(1);
while(!hdmi_in1_clocking_mmcm_drdy_read() && timeout < MMCM_TIMEOUT)
timeout++;
if( timeout >= MMCM_TIMEOUT ) {
printf("hdmi_in1_clocking_mmcm_write failed with adr %x, data %x\n", adr, data);
}
}
int hdmi_in1_clocking_mmcm_read(int adr) {
int timeout = 0;
hdmi_in1_clocking_mmcm_adr_write(adr);
hdmi_in1_clocking_mmcm_read_write(1);
while(!hdmi_in1_clocking_mmcm_drdy_read() && timeout < MMCM_TIMEOUT)
timeout++;
if( timeout >= MMCM_TIMEOUT ) {
printf("hdmi_in1_clocking_mmcm_read failed with adr %x\n", adr);
}
return hdmi_in1_clocking_mmcm_dat_r_read();
}
#ifdef CSR_HDMI_IN1_CLOCKING_MMCM_DRDY_O_ADDR
void hdmi_in1_clocking_mmcm_write_o(int adr, int data) {
int timeout = 0;
hdmi_in1_clocking_mmcm_adr_write(adr);
hdmi_in1_clocking_mmcm_dat_w_write(data);
hdmi_in1_clocking_mmcm_write_o_write(1);
while(!hdmi_in1_clocking_mmcm_drdy_o_read() && timeout < MMCM_TIMEOUT)
timeout++;
if( timeout >= MMCM_TIMEOUT ) {
printf("hdmi_in1_clocking_mmcm_write_o failed with adr %x, data %x\n", adr, data);
}
}
int hdmi_in1_clocking_mmcm_read_o(int adr) {
int timeout = 0;
hdmi_in1_clocking_mmcm_adr_write(adr);
hdmi_in1_clocking_mmcm_read_o_write(1);
while(!hdmi_in1_clocking_mmcm_drdy_o_read() && timeout < MMCM_TIMEOUT)
timeout++;
if( timeout >= MMCM_TIMEOUT ) {
printf("hdmi_in1_clocking_mmcm_read_o failed with adr %x\n", adr);
}
return hdmi_in1_clocking_mmcm_dat_o_r_read();
}
#endif
static void hdmi_in_1_config_30_60mhz(void) {
hdmi_in1_clocking_mmcm_write(0x14, 0x1000 | (10<<6) | 10); /* clkfbout_mult = 20 */
hdmi_in1_clocking_mmcm_write(0x08, 0x1000 | (10<<6) | 10); /* clkout0_divide = 20 */
hdmi_in1_clocking_mmcm_write(0x0a, 0x1000 | (8<<6) | 8); /* clkout1_divide = 16 */
hdmi_in1_clocking_mmcm_write(0x0c, 0x1000 | (2<<6) | 2); /* clkout2_divide = 4 */
hdmi_in1_clocking_mmcm_write(0x0d, 0); /* clkout2_divide = 4 */
}
static void hdmi_in_1_config_60_120mhz(void) {
hdmi_in1_clocking_mmcm_write(0x14, 0x1000 | (5<<6) | 5); /* clkfbout_mult = 10 */
hdmi_in1_clocking_mmcm_write(0x08, 0x1000 | (5<<6) | 5); /* clkout0_divide = 10 */
hdmi_in1_clocking_mmcm_write(0x0a, 0x1000 | (4<<6) | 4); /* clkout1_divide = 8 */
hdmi_in1_clocking_mmcm_write(0x0c, 0x1000 | (1<<6) | 1); /* clkout2_divide = 2 */
hdmi_in1_clocking_mmcm_write(0x0d, 0); /* clkout2_divide = 2 */
// lock/filter parameters derived from these VCO settings for 720p:
/* p_BANDWIDTH="OPTIMIZED", i_RST=self._mmcm_reset.storage, o_LOCKED=mmcm_locked,
# VCO
p_REF_JITTER1=0.01, p_CLKIN1_PERIOD=13.5, #6.734, 7.2
p_CLKFBOUT_MULT_F=10.0, p_CLKFBOUT_PHASE=0.000, p_DIVCLK_DIVIDE=1,
i_CLKIN1=clk_input_bufr, i_CLKFBIN=mmcm_fb_o, o_CLKFBOUT=mmcm_fb, */
hdmi_in1_clocking_mmcm_write(0x18, 0x3e8); // lock register 1
hdmi_in1_clocking_mmcm_write(0x19, (0x0 << 15) | (0x1c << 10) | 0x3001); // lock register 2
hdmi_in1_clocking_mmcm_write(0x1A, (0x1 << 15) | (0x1c << 10) | 0x33e9); // lock register 3
hdmi_in1_clocking_mmcm_write(0x4E, (0x1 << 15) | (0x3 << 11) | (0x1 << 8) | 0x8); // filter register 1, reserved[7:0] is 0x8
hdmi_in1_clocking_mmcm_write(0x4F, (0x2 << 11) | (0x2 << 7) | (0x0 << 4) | 0x8); // filter register 2, reserved[7:0] is 0x8
#ifdef CSR_HDMI_IN1_CLOCKING_MMCM_DRDY_O_ADDR
hdmi_in1_clocking_mmcm_write_o(0x14, 0x1000 | (2<<6) | 3); /* clkfbout_mult = 5 (2/3) */
hdmi_in1_clocking_mmcm_write_o(0x15, 1 << 7); /* clkfbout_mult = 5 (edge = 1) */
hdmi_in1_clocking_mmcm_write_o(0x08, 0x1000 | (2<<6) | 3); /* clkout0_divide = 5 (2/3) */
hdmi_in1_clocking_mmcm_write_o(0x09, 1 << 7); /* clkout0_divide = 5 (edge = 1) */
// hdmi_in1_clocking_mmcm_write_o(0x0a, 0x1000 | (2<<6) | 2); /* clkout1_divide = 4 */
hdmi_in1_clocking_mmcm_write_o(0x0c, 0x1000 | (0<<6) | 0); /* clkout2_divide = 1 */
hdmi_in1_clocking_mmcm_write_o(0x0d, (1<<6)); /* clkout2_divide = 1 */
// lock/filter parameters derived from these VCO settings for 1080p, low bandwidth:
/* p_BANDWIDTH="LOW", i_RST=self._mmcm_reset.storage, o_LOCKED=mmcm_locked_o,
# VCO
p_REF_JITTER1=0.01, p_CLKIN1_PERIOD=6.734,
p_CLKFBOUT_MULT_F=5.0, p_CLKFBOUT_PHASE=0.000, p_DIVCLK_DIVIDE=1,
i_CLKIN1=mmcm_clk0, # uncompesated delay for best phase match between master/slave
i_CLKFBIN=mmcm_fb_o, o_CLKFBOUT=mmcm_fb_o, */
hdmi_in1_clocking_mmcm_write_o(0x18, 0x3e8); // lock register 1
hdmi_in1_clocking_mmcm_write_o(0x19, (0x0 << 15) | (0x1c << 10) | 0x3001); // lock register 2
hdmi_in1_clocking_mmcm_write_o(0x1A, (0x1 << 15) | (0x1c << 10) | 0x33e9); // lock register 3
// FiltReg1: table[9]:0x0 (r):0x0 table[8:7]:0x1 (r):0x0 table[6]:0x0 (r):0x8
hdmi_in1_clocking_mmcm_write_o(0x4E, (0x0 << 15) | (0x1 << 11) | (0x0 << 8) | 0x8); // filter register 1, reserved[7:0] is 0x8
// FiltReg2: table[5]:0x0 (r):0x0 table[4:3]:0x0 (r):0x0 table[2:1]:0x2 (r):0x0 table[0]:0x0 (r):0x8
hdmi_in1_clocking_mmcm_write_o(0x4F, (0x0 << 11) | (0x2 << 7) | (0x0 << 4) | 0x8); // filter register 2, reserved[7:0] is 0x8
#endif
}
static void hdmi_in_1_config_120_240mhz(void) {
hdmi_in1_clocking_mmcm_write(0x14, 0x1000 | (2<<6) | 3); /* clkfbout_mult = 5 (2/3) */
hdmi_in1_clocking_mmcm_write(0x15, 1 << 7); /* clkfbout_mult = 5 (edge = 1) */
hdmi_in1_clocking_mmcm_write(0x08, 0x1000 | (2<<6) | 3); /* clkout0_divide = 5 (2/3) */
hdmi_in1_clocking_mmcm_write(0x09, 1 << 7); /* clkout0_divide = 5 (edge = 1) */
hdmi_in1_clocking_mmcm_write(0x0a, 0x1000 | (2<<6) | 2); /* clkout1_divide = 4 */
hdmi_in1_clocking_mmcm_write(0x0c, 0x1000 | (0<<6) | 0); /* clkout2_divide = 1 */
hdmi_in1_clocking_mmcm_write(0x0d, (1<<6)); /* clkout2_divide = 1 */
// lock/filter parameters derived from these VCO settings for 1080p, low bandwidth:
/* p_BANDWIDTH="OPTIMIZED", i_RST=self._mmcm_reset.storage, o_LOCKED=mmcm_locked,
# VCO
p_REF_JITTER1=0.01, p_CLKIN1_PERIOD=6.734,
p_CLKFBOUT_MULT_F=5.0, p_CLKFBOUT_PHASE=0.000, p_DIVCLK_DIVIDE=1,
i_CLKIN1=clk_input_bufr, i_CLKFBIN=mmcm_fb_o, o_CLKFBOUT=mmcm_fb, */
hdmi_in1_clocking_mmcm_write(0x18, 0x3e8); // lock register 1
hdmi_in1_clocking_mmcm_write(0x19, (0x0 << 15) | (0xe << 10) | 0x3801); // lock register 2
hdmi_in1_clocking_mmcm_write(0x1A, (0x1 << 15) | (0xe << 10) | 0x3be9); // lock register 3
hdmi_in1_clocking_mmcm_write(0x4E, (0x0 << 15) | (0x1 << 11) | (0x0 << 8) | 0x8); // filter register 1, reserved[7:0] is 0x8
hdmi_in1_clocking_mmcm_write(0x4F, (0x3 << 11) | (0x2 << 7) | (0x0 << 4) | 0x8); // filter register 2, reserved[7:0] is 0x8
#ifdef CSR_HDMI_IN1_CLOCKING_MMCM_DRDY_O_ADDR
hdmi_in1_clocking_mmcm_write_o(0x14, 0x1000 | (5<<6) | 5); /* clkfbout_mult = 10 */
hdmi_in1_clocking_mmcm_write_o(0x15, 0); /* clkfbout_mult = 10 (edge = 0) */
hdmi_in1_clocking_mmcm_write_o(0x08, 0x1000 | (5<<6) | 5); /* clkout0_divide = 10 */
hdmi_in1_clocking_mmcm_write_o(0x09, 0) ; /* clkout0_divide = 10 (edge = 0) */
// clkout1 is not used
hdmi_in1_clocking_mmcm_write_o(0x0c, 0x1000 | (1<<6) | 1); /* clkout2_divide = 2 */
hdmi_in1_clocking_mmcm_write_o(0x0d, 0); /* clkout2_divide = 2 */
// lock/filter parameters derived from these VCO settings for 1080p, low bandwidth:
/* p_BANDWIDTH="LOW", i_RST=self._mmcm_reset.storage, o_LOCKED=mmcm_locked_o,
# VCO
p_REF_JITTER1=0.01, p_CLKIN1_PERIOD=6.734,
p_CLKFBOUT_MULT=10, p_CLKFBOUT_PHASE=0.000, p_DIVCLK_DIVIDE=1, # PLL range is 800-1866 MHz, unlike MMCM which is 600-1440 MHz
i_CLKIN1=mmcm_clk0, # uncompensated delay for best phase match between master/slave
i_CLKFBIN=mmcm_fb2_o, o_CLKFBOUT=mmcm_fb2_o, */
hdmi_in1_clocking_mmcm_write_o(0x18, 0x3e8); // lock register 1
hdmi_in1_clocking_mmcm_write_o(0x19, (0x0 << 15) | (0x1c << 10) | 0x3001); // lock register 2
hdmi_in1_clocking_mmcm_write_o(0x1A, (0x1 << 15) | (0x1c << 10) | 0x33e9); // lock register 3
// FiltReg1: table[9]:0x0 (r):0x0 table[8:7]:0x1 (r):0x0 table[6]:0x0 (r):0x8
hdmi_in1_clocking_mmcm_write_o(0x4E, (0x0 << 15) | (0x1 << 11) | (0x0 << 8) | 0x8); // filter register 1, reserved[7:0] is 0x8
// FiltReg2: table[5]:0x0 (r):0x0 table[4:3]:0x0 (r):0x0 table[2:1]:0x2 (r):0x0 table[0]:0x0 (r):0x8
hdmi_in1_clocking_mmcm_write_o(0x4F, (0x0 << 11) | (0x2 << 7) | (0x0 << 4) | 0x8); // filter register 2, reserved[7:0] is 0x8
#endif
}
#endif
/*
"table" values are generated by doing a direct dump of the mmcm/plle2 values and recording them
without going to the intermediate decoded values, which is error-prone during the recoding process...
*/
#define MTE 46 // MCM table entries
void hdmi_in_0_config_120_240mhz_table() {
// according to xap888, register 0x28 should be all high when using DRP, so manually edit dumps accordingly
// hdmi0 MMCM (bandwidth = LOW)
int hdmi0_mmcm_low[MTE] = {0x28, 0xffff, 0x9, 0x80, 0x8, 0x1083, 0xa, 0x1082, 0xb, 0x0, 0xc, 0x1041,
0xd, 0x40, 0xe, 0x41, 0xf, 0x40, 0x10, 0x41, 0x11, 0x40, 0x6, 0x41, 0x7, 0x40,
0x12, 0x41, 0x13, 0x40, 0x16, 0x1041, 0x14, 0x1083, 0x15, 0x80,
0x18, 0x3e8, 0x19, 0x3801, 0x1a, 0xbbe9, 0x4e, 0x808, 0x4f, 0x1900};
// hdmi0 MMCM (bandwidth = OPTIMIZED/HIGH)
int hdmi0_mmcm_opt[MTE] = {0x28, 0xffff, 0x9, 0x80, 0x8, 0x1083, 0xa, 0x1082, 0xb, 0x0, 0xc, 0x1041,
0xd, 0x40, 0xe, 0x41, 0xf, 0x40, 0x10, 0x41, 0x11, 0x40, 0x6, 0x41, 0x7, 0x40,
0x12, 0x41, 0x13, 0x40, 0x16, 0x1041, 0x14, 0x1083, 0x15, 0x80,
0x18, 0x3e8, 0x19, 0x3801, 0x1a, 0xbbe9, 0x4e, 0x9108, 0x4f, 0x1900};
// hdmi0 PLLE (bandwidth = LOW)
int hdmi0_plle[46] = {0x28, 0xffff, 0x9, 0x0, 0x8, 0x1145, 0xa, 0x41, 0xb, 0x40, 0xc, 0x1041, 0xd, 0x0, 0xe, 0x41, 0xf, 0x40, 0x10, 0x41, 0x11, 0x40, 0x6, 0x41, 0x7, 0x40, 0x12, 0x0, 0x13, 0x0, 0x16, 0x1041, 0x14, 0x1145, 0x15, 0x0, 0x18, 0x3e8, 0x19, 0x7001, 0x1a, 0xf3e9, 0x4e, 0x808, 0x4f, 0x100};
printf("setting optimized bandwdith on hdmi in 0\n");
int i;
for( i = 0; i < MTE; i += 2 ) {
hdmi_in0_clocking_mmcm_write(hdmi0_mmcm_opt[i], hdmi0_mmcm_opt[i+1]);
}
for( i = 0; i < MTE; i += 2 ) {
hdmi_in0_clocking_mmcm_write_o(hdmi0_plle[i], hdmi0_plle[i+1]);
}
}
void hdmi_in_0_config_60_120mhz_table() {
// hdmi0 MMCM (bandwidth = OPTIMIZED/HIGH)
int hdmi0_mmcm_opt[MTE] = {0x28, 0xffff, 0x9, 0x80, 0x8, 0x11c8, 0xa, 0x1186, 0xb, 0x0, 0xc, 0x1042, 0xd, 0x80, 0xe, 0x41, 0xf, 0x40, 0x10, 0x41, 0x11, 0x40, 0x6, 0x41, 0x7, 0x40, 0x12, 0x41, 0x13, 0x40, 0x16, 0x1041, 0x14, 0x11c8, 0x15, 0x80, 0x18, 0x28a, 0x19, 0x7c01, 0x1a, 0xffe9, 0x4e, 0x9908, 0x4f, 0x8100};
// hdmi0 PLLE (bandwidth = HIGH) high reduces output jitter, low maximizes input jitter tolerance
int hdmi0_plle[MTE] = {0x28, 0xffff, 0x9, 0x0, 0x8, 0x128a, 0xa, 0x41, 0xb, 0x40, 0xc, 0x1082, 0xd, 0x0, 0xe, 0x41, 0xf, 0x40, 0x10, 0x41, 0x11, 0x40, 0x6, 0x41, 0x7, 0x40, 0x12, 0x0, 0x13, 0x0, 0x16, 0x1041, 0x14, 0x128a, 0x15, 0x0, 0x18, 0x1f4, 0x19, 0x7c01, 0x1a, 0xffe9, 0x4e, 0x1908, 0x4f, 0x1800};
int i;
for( i = 0; i < MTE; i += 2 ) {
hdmi_in0_clocking_mmcm_write(hdmi0_mmcm_opt[i], hdmi0_mmcm_opt[i+1]);
}
for( i = 0; i < MTE; i += 2 ) {
hdmi_in0_clocking_mmcm_write_o(hdmi0_plle[i], hdmi0_plle[i+1]);
}
}
void hdmi_in_1_config_120_240mhz_table() {
// hdmi1 MMCM
int hdmi1_mmcm[MTE] = {0x28, 0xffff, 0x9, 0x80, 0x8, 0x1083, 0xa, 0x1082, 0xb, 0x0, 0xc, 0x1041, 0xd, 0x40, 0xe, 0x41, 0xf, 0x40, 0x10, 0x41, 0x11, 0x40, 0x6, 0x41, 0x7, 0x40, 0x12, 0x41, 0x13, 0x40, 0x16, 0x1041, 0x14, 0x1083, 0x15, 0x80, 0x18, 0x3e8, 0x19, 0x3801, 0x1a, 0xbbe9, 0x4e, 0x9108, 0x4f, 0x1900};
int i;
for( i = 0; i < MTE; i += 2 ) {
hdmi_in1_clocking_mmcm_write(hdmi1_mmcm[i], hdmi1_mmcm[i+1]);
}
}
void hdmi_in_1_config_60_120mhz_table() {
// hdmi1 MMCM
int hdmi1_mmcm[46] = {0x28, 0xffff, 0x9, 0x80, 0x8, 0x11c8, 0xa, 0x1186, 0xb, 0x0, 0xc, 0x1042, 0xd, 0x80, 0xe, 0x41, 0xf, 0x40, 0x10, 0x41, 0x11, 0x40, 0x6, 0x41, 0x7, 0x40, 0x12, 0x41, 0x13, 0x40, 0x16, 0x1041, 0x14, 0x11c8, 0x15, 0x80, 0x18, 0x28a, 0x19, 0x7c01, 0x1a, 0xffe9, 0x4e, 0x9908, 0x4f, 0x8100};
int i;
for( i = 0; i < MTE; i += 2 ) {
hdmi_in1_clocking_mmcm_write(hdmi1_mmcm[i], hdmi1_mmcm[i+1]);
}
}
void mmcm_config_for_clock(int freq)
{
/*
* FIXME: we also need to configure phase detector
*/
// mmcm_dump(); // used to extract params if we make changes to VCOs
#ifdef CSR_HDMI_IN0_BASE
hdmi_in0_clocking_mmcm_reset_write(1);
if(freq < 3000)
printf("Frequency too low for input MMCMs\r\n");
else if(freq < 6000)
hdmi_in_0_config_30_60mhz();
else if(freq < 12000)
hdmi_in_0_config_60_120mhz_table();
else if(freq < 24000)
hdmi_in_0_config_120_240mhz_table();
else
printf("Frequency too high for input MMCMs\r\n");
hdmi_in0_clocking_mmcm_reset_write(0);
#endif
#ifdef CSR_HDMI_IN1_BASE
hdmi_in1_clocking_mmcm_reset_write(1);
if(freq < 3000)
printf("Frequency too low for input MMCMs\r\n");
else if(freq < 6000)
hdmi_in_1_config_30_60mhz();
else if(freq < 12000)
hdmi_in_1_config_60_120mhz_table();
else if(freq < 24000)
hdmi_in_1_config_120_240mhz_table();
else
printf("Frequency too high for input MMCMs\r\n");
hdmi_in1_clocking_mmcm_reset_write(0);
#endif
}
void mmcm_decode_clkreg1(unsigned int data) {
printf( " phase mux:0x%x", (data >> 13) & 0x7 );
printf( " (r):0x%x", (data >> 12) & 0x1 );
printf( " high time:0x%x", (data >> 6) & 0x3F );
printf( " low time:0x%x", (data >> 0) & 0x3F );
}
void mmcm_decode_clkreg2(unsigned int data) {
printf( " both:" );
printf( " mx:0x%x", (data >> 8) & 0x3 );
printf( " edge:0x%x", (data >> 7) & 0x1 );
printf( " no count:0x%x", (data >> 6) & 0x1 );
printf( " delay time:0x%x | ", (data >> 0) & 0x3F );
printf( " int:" );
printf( " (r):0x%x", (data >> 15) & 0x1 );
printf( " frac:0x%x", (data >> 12) & 0x7 );
printf( " frac_en:0x%x", (data >> 11) & 0x1 );
printf( " frac_wf_r:0x%x | ", (data >> 10) & 0x1 );
printf( " frac:" );
printf( " (r):0x%x", (data >> 14) & 0x3 );
printf( " phase_mux_f_clkout0:0x%x", (data >> 11) & 0x7 );
printf( " frac_wf_f_clkout0:0x%x\n", (data >> 10) & 0x1 );
}
void mmcm_decode_divreg(unsigned int data) {
printf( " (r):0x%x", (data >> 14) & 0x3 );
printf( " edge:0x%x", (data >> 13) & 0x1 );
printf( " no count:0x%x", (data >> 12) & 0x1 );
printf( " high time:0x%x", (data >> 6) & 0x3f );
printf( " low time:0x%x\n", (data >> 0) & 0x3f );
}
void mmcm_decode_lockreg1(unsigned int data) {
printf( " (r):0x%x", (data >> 10) & 0x3f );
printf( " lktable[29:0]:0x%x\n", (data >> 0) & 0x3FF );
}
void mmcm_decode_lockreg2(unsigned int data) {
printf( " (r):0x%x", (data >> 15) & 0x1 );
printf( " lktable[34:30]:0x%x", (data >> 10) & 0x1F );
printf( " lktable[9:0]:0x%x\n", (data >> 0) & 0x3FFF );
}
void mmcm_decode_lockreg3(unsigned int data) {
printf( " (r):0x%x", (data >> 15) & 0x1 );
printf( " lktable[39:35]:0x%x", (data >> 10) & 0x1F );
printf( " lktable[19:10]:0x%x\n", (data >> 0) & 0x3FFF );
}
void mmcm_decode_filtreg1(unsigned int data) {
printf( " table[9]:0x%x", (data >> 15) & 0x1 );
printf( " (r):0x%x", (data >> 13) & 0x3 );
printf( " table[8:7]:0x%x", (data >> 11) & 0x3 );
printf( " (r):0x%x", (data >> 9) & 0x3 );
printf( " table[6]:0x%x", (data >> 8) & 0x1 );
printf( " (r):0x%x\n", (data >> 0) & 0xFF );
}
void mmcm_decode_filtreg2(unsigned int data) {
printf( " table[5]:0x%x", (data >> 15) & 0x1 );
printf( " (r):0x%x", (data >> 13) & 0x3 );
printf( " table[4:3]:0x%x", (data >> 11) & 0x3 );
printf( " (r):0x%x", (data >> 9) & 0x3 );
printf( " table[2:1]:0x%x", (data >> 7) & 0x3 );
printf( " (r):0x%x", (data >> 5) & 0x3 );
printf( " table[0]:0x%x", (data >> 4) & 0x1 );
printf( " (r):0x%x\n", (data >> 5) & 0xF );
}
void mmcm_decode_power7(unsigned int data) {
printf( " power (must be high):0x%x\n", data & 0xFFFF );
}
void mmcm_decode_reg(unsigned int adr, unsigned int data) {
switch(adr) {
case 0x6:
printf( "\nCLKOUT5 ClkReg1: " );
mmcm_decode_clkreg1(data);
break;
case 0x8:
printf( "\nCLKOUT0 ClkReg1: " );
mmcm_decode_clkreg1(data);
break;
case 0xA:
printf( "\nCLKOUT1 ClkReg1: " );
mmcm_decode_clkreg1(data);
break;
case 0xC:
printf( "\nCLKOUT2 ClkReg1: " );
mmcm_decode_clkreg1(data);
break;
case 0xE:
printf( "\nCLKOUT3 ClkReg1: " );
mmcm_decode_clkreg1(data);
break;
case 0x10:
printf( "\nCLKOUT4 ClkReg1: " );
mmcm_decode_clkreg1(data);
break;
case 0x12:
printf( "\nCLKOUT6 ClkReg1: " );
mmcm_decode_clkreg1(data);
break;
case 0x14:
printf( "\nCLKFBOUT ClkReg1: " );
mmcm_decode_clkreg1(data);
break;
case 0x7:
printf( "\nCLKOUT5 ClkReg2: " );
mmcm_decode_clkreg2(data);
break;
case 0x9:
printf( "\nCLKOUT0 ClkReg2: " );
mmcm_decode_clkreg2(data);
break;
case 0xB:
printf( "\nCLKOUT1 ClkReg2: " );
mmcm_decode_clkreg2(data);
break;
case 0xD:
printf( "\nCLKOUT2 ClkReg2: " );
mmcm_decode_clkreg2(data);
break;
case 0xF:
printf( "\nCLKOUT3 ClkReg2: " );
mmcm_decode_clkreg2(data);
break;
case 0x11:
printf( "\nCLKOUT4 ClkReg2: " );
mmcm_decode_clkreg2(data);
break;
case 0x13:
printf( "\nCLKOUT6 ClkReg2: " );
mmcm_decode_clkreg2(data);
break;
case 0x15:
printf( "\nCLKFBOUT ClkReg2: " );
mmcm_decode_clkreg2(data);
break;
case 0x16:
printf( "\nDivReg: " );
mmcm_decode_divreg(data);
break;
case 0x18:
printf( "\nLockReg1: " );
mmcm_decode_lockreg1(data);
break;
case 0x19:
printf( "\nLockReg2: " );
mmcm_decode_lockreg2(data);
break;
case 0x1A:
printf( "\nLockReg3: " );
mmcm_decode_lockreg3(data);
break;
case 0x28:
printf( "\nPowerReg 7 series: " );
mmcm_decode_power7(data);
break;
case 0x4E:
printf( "\nFiltReg1: " );
mmcm_decode_filtreg1(data);
break;
case 0x4F:
printf( "\nFiltReg2: " );
mmcm_decode_filtreg2(data);
break;
default:
if( data != 0 )
printf( " %04x(r)", data );
else
printf( " 0(r)", data );
}
}
#ifdef CSR_CRG_BASE
void crg_mmcm_write(int adr, int data) {
int timeout = 0;
crg_mmcm_adr_write(adr);
crg_mmcm_dat_w_write(data);
crg_mmcm_write_write(1);
while(!crg_mmcm_drdy_read() && timeout < MMCM_TIMEOUT)
timeout++;
if( timeout >= MMCM_TIMEOUT ) {
printf("crg_mmcm_write failed with adr %x, data %x\n", adr, data);
}
}
int crg_mmcm_read(int adr) {
int timeout = 0;
crg_mmcm_adr_write(adr);
crg_mmcm_read_write(1);
while(!crg_mmcm_drdy_read() && timeout < MMCM_TIMEOUT)
timeout++;
if( timeout >= MMCM_TIMEOUT ) {
printf("crg_mmcm_read failed with adr %x\n", adr);
}
return crg_mmcm_dat_r_read();
}
#endif
#define S7_MMCM_MAP_LEN 23
// map order comes from xapp888 -- no explanation in docs for why the order is necessary, but it seems important
static int addr_map[S7_MMCM_MAP_LEN] = {0x28, 0x9, 0x8, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0x10, 0x11, 0x6, 0x7,
0x12, 0x13, 0x16, 0x14, 0x15, 0x18, 0x19, 0x1a, 0x4e, 0x4f};
void mmcm_dump_code(void) {
int i;
#ifdef CSR_CRG_BASE
printf( "// CRG MMCM\n" );
printf( "int crg_mmcm[%d] = {", S7_MMCM_MAP_LEN * 2 );
for( i = 0; i < S7_MMCM_MAP_LEN; i++ ) {
if( addr_map[i] == 0x28 ) // this state substitutes to all 1's for DRP to work
printf( "0x28, 0xffff" );
else
printf( "0x%x, 0x%x", addr_map[i], crg_mmcm_read(addr_map[i]) );
if( i < S7_MMCM_MAP_LEN - 1 )
printf( ", " );
}
printf( "};\n" );
#endif
printf( "// hdmi0 MMCM\n" );
printf( "int hdmi0_mmcm[%d] = {", S7_MMCM_MAP_LEN * 2 );
for( i = 0; i < S7_MMCM_MAP_LEN; i++ ) {
if( addr_map[i] == 0x28 ) // this state substitutes to all 1's for DRP to work
printf( "0x28, 0xffff" );
else
printf( "0x%x, 0x%x", addr_map[i], hdmi_in0_clocking_mmcm_read(addr_map[i]) );
if( i < S7_MMCM_MAP_LEN - 1 )
printf( ", " );
}
printf( "};\n" );
printf( "// hdmi0 PLLE\n" );
printf( "int hdmi0_plle[%d] = {", S7_MMCM_MAP_LEN * 2 );
for( i = 0; i < S7_MMCM_MAP_LEN; i++ ) {
if( addr_map[i] == 0x28 ) // this state substitutes to all 1's for DRP to work
printf( "0x28, 0xffff" );
else
printf( "0x%x, 0x%x", addr_map[i], hdmi_in0_clocking_mmcm_read_o(addr_map[i]) );
if( i < S7_MMCM_MAP_LEN - 1 )
printf( ", " );
}
printf( "};\n" );
printf( "// hdmi1 MMCM\n" );
printf( "int hdmi1_mmcm[%d] = {", S7_MMCM_MAP_LEN * 2 );
for( i = 0; i < S7_MMCM_MAP_LEN; i++ ) {
if( addr_map[i] == 0x28 ) // this state substitutes to all 1's for DRP to work
printf( "0x28, 0xffff" );
else
printf( "0x%x, 0x%x", addr_map[i], hdmi_in1_clocking_mmcm_read(addr_map[i]) );
if( i < S7_MMCM_MAP_LEN - 1 )
printf( ", " );
}
printf( "};\n" );
#if 0 // not configured on NeTV2
printf( "// hdmi1 PLLE\n" );
printf( "int hdmi1_plle[%d] = {", S7_MMCM_MAP_LEN * 2 );
for( i = 0; i < S7_MMCM_MAP_LEN; i++ ) {
if( addr_map[i] == 0x28 ) // this state substitutes to all 1's for DRP to work
printf( "0x28, 0xffff" );
else
printf( "0x%x, 0x%x", addr_map[i], hdmi_in1_clocking_mmcm_read_o(addr_map[i]) );
if( i < S7_MMCM_MAP_LEN - 1 )
printf( ", " );
}
printf( "};\n" );
#endif
}
void mmcm_dump(void)
{
int i;
#ifdef CSR_HDMI_OUT0_BASE
printf("framebuffer MMCM:\r\n");
for(i=0;i<128;i++)
printf("%04x ", hdmi_out0_mmcm_read(i));
printf("\r\n");
#endif
#ifdef CSR_HDMI_IN0_BASE
printf("dvisampler 0 MMCM:\r\n");
for(i=0;i<128;i++)
mmcm_decode_reg(i, hdmi_in0_clocking_mmcm_read(i));
printf("\r\n");
#ifdef CSR_HDMI_IN0_CLOCKING_MMCM_DRDY_O_ADDR
printf("=====================================================\r\n");
printf("output 0 PLLE2:\r\n");
for(i=0;i<128;i++)
mmcm_decode_reg(i, hdmi_in0_clocking_mmcm_read_o(i));
printf("\r\n");
#endif
#endif
#ifdef CSR_HDMI_IN1_BASE
printf("dvisampler 1 MMCM:\r\n");
for(i=0;i<128;i++)
mmcm_decode_reg(i, hdmi_in1_clocking_mmcm_read(i));
printf("\r\n");
#ifdef CSR_HDMI_IN1_CLOCKING_MMCM_DRDY_O_ADDR
printf("=====================================================\r\n");
printf("output 1 PLLE2:\r\n");
for(i=0;i<128;i++)
mmcm_decode_reg(i, hdmi_in1_clocking_mmcm_read_o(i));
printf("\r\n");
#endif
#endif
}
// This function takes the divide value and the bandwidth setting of the MMCM
// and outputs the digital filter settings necessary.
// "divide" is ironically, the CLK_FBOUT_MULT number that goes into the PLL.
int mmcm_filter_lookup( int divide, int bandwidth ) {
int filter_lookup;
// CP_RES_LFHF
int lookup_low[64] = {188, 188, 188, 188, 156, 172, 180, 140,
148, 148, 164, 184, 184, 184, 184, 132,
132, 132, 152, 152, 152, 152, 152, 152,
152, 168, 168, 168, 168, 168, 176, 176,
176, 176, 176, 176, 176, 176, 176, 176,
176, 176, 176, 176, 176, 176, 176, 136,
136, 136, 136, 136, 136, 136, 136, 136,
136, 136, 136, 136, 136, 136, 136, 136};
// CP_RES_LFHF
int lookup_high[64] = {188, 316, 364, 476, 860, 940, 948, 972,
916, 980, 996, 836, 996, 996, 996, 996,
980, 980, 772, 772, 772, 368, 368, 368,
368, 208, 208, 208, 208, 208, 208, 208,
208, 208, 208, 208, 208, 208, 208, 208,
208, 160, 160, 160, 160, 160, 452, 452,
304, 304, 304, 304, 388, 388, 344, 344,
344, 144, 144, 144, 144, 296, 240, 240};
if( bandwidth == 0 ) {
// Set lookup_entry with the explicit bits from lookup with a part select
// Low Bandwidth
filter_lookup = lookup_low[ 64 - divide ];
} else {
filter_lookup = lookup_high[ 64 - divide ];
}
return filter_lookup;
}
int lock_bit_4e( int digital_filt, int prev_val ) {
return (0x66FF & prev_val) |
((digital_filt & (1 << 9)) >> 9) << 15 |
((digital_filt & (3 << 7)) >> 7) << 11 |
((digital_filt & (1 << 6)) >> 6) << 8;
}
int lock_bit_4f( int digital_filt, int prev_val ) {
return (0x666F & prev_val) |
((digital_filt & (1 << 5)) >> 5) << 15 |
((digital_filt & (3 << 3)) >> 3) << 11 |
((digital_filt & (3 << 1)) >> 1) << 7 |
((digital_filt & (1 << 0)) >> 0) << 4;
}
void set_mmcm0_filt( int mult, int bw ) {
int filter_val;
int prev_val;
int new_val;
int hdmi0_mmcm_opt[MTE] = {0x28, 0xffff, 0x9, 0x80, 0x8, 0x1083, 0xa, 0x1082, 0xb, 0x0, 0xc, 0x1041,
0xd, 0x40, 0xe, 0x41, 0xf, 0x40, 0x10, 0x41, 0x11, 0x40, 0x6, 0x41, 0x7, 0x40,
0x12, 0x41, 0x13, 0x40, 0x16, 0x1041, 0x14, 0x1083, 0x15, 0x80,
0x18, 0x3e8, 0x19, 0x3801, 0x1a, 0xbbe9, 0x4e, 0x9108, 0x4f, 0x1900};
if( (mult > 64) || (mult < 1) ) {
printf( "mmcm0_filt: invalid mult %d\n", mult );
return;
}
filter_val = mmcm_filter_lookup( mult, bw > 0 ? 1 : 0 );
printf( "filter_val: %x\n", filter_val );
prev_val = hdmi_in0_clocking_mmcm_read( 0x4e );
printf( "mmcm0_filt: %04x was in 0x4e\n", prev_val );
new_val = lock_bit_4e( filter_val, prev_val );
printf( "mmcm0_filt: writing %04x to 0x4e\n", new_val );
hdmi0_mmcm_opt[43] = new_val;
prev_val = hdmi_in0_clocking_mmcm_read( 0x4f );
printf( "mmcm0_filt: %04x was in 0x4f\n", prev_val );
new_val = lock_bit_4f( filter_val, prev_val );
printf( "mmcm0_filt: writing %04x to 0x4f\n", new_val );
hdmi_in0_clocking_mmcm_write(0x4f, new_val);
hdmi0_mmcm_opt[45] = new_val;
// write the whole table in anew
int i;
for( i = 0; i < MTE; i += 2 ) {
hdmi_in0_clocking_mmcm_write(hdmi0_mmcm_opt[i], hdmi0_mmcm_opt[i+1]);
}
}