-
Notifications
You must be signed in to change notification settings - Fork 25
/
models.py
645 lines (526 loc) · 28.9 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
"""
Copyright (C) 2022 King Saud University, Saudi Arabia
SPDX-License-Identifier: Apache-2.0
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Author: Hamdi Altaheri
"""
#%%
import tensorflow as tf
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation, AveragePooling2D, MaxPooling2D
from tensorflow.keras.layers import Conv1D, Conv2D, SeparableConv2D, DepthwiseConv2D
from tensorflow.keras.layers import BatchNormalization, LayerNormalization, Flatten
from tensorflow.keras.layers import Add, Concatenate, Lambda, Input, Permute
from tensorflow.keras.regularizers import L2
from tensorflow.keras.constraints import max_norm
from tensorflow.keras import backend as K
from attention_models import attention_block
#%% The proposed ATCNet model, https://doi.org/10.1109/TII.2022.3197419
def ATCNet_(n_classes, in_chans = 22, in_samples = 1125, n_windows = 5, attention = 'mha',
eegn_F1 = 16, eegn_D = 2, eegn_kernelSize = 64, eegn_poolSize = 7, eegn_dropout=0.3,
tcn_depth = 2, tcn_kernelSize = 4, tcn_filters = 32, tcn_dropout = 0.3,
tcn_activation = 'elu', fuse = 'average'):
""" ATCNet model from Altaheri et al 2023.
See details at https://ieeexplore.ieee.org/abstract/document/9852687
Notes
-----
The initial values in this model are based on the values identified by
the authors
References
----------
.. H. Altaheri, G. Muhammad, and M. Alsulaiman. "Physics-informed
attention temporal convolutional network for EEG-based motor imagery
classification." IEEE Transactions on Industrial Informatics,
vol. 19, no. 2, pp. 2249-2258, (2023)
https://doi.org/10.1109/TII.2022.3197419
"""
input_1 = Input(shape = (1,in_chans, in_samples)) # TensorShape([None, 1, 22, 1125])
input_2 = Permute((3,2,1))(input_1)
dense_weightDecay = 0.5
conv_weightDecay = 0.009
conv_maxNorm = 0.6
from_logits = False
numFilters = eegn_F1
F2 = numFilters*eegn_D
block1 = Conv_block_(input_layer = input_2, F1 = eegn_F1, D = eegn_D,
kernLength = eegn_kernelSize, poolSize = eegn_poolSize,
weightDecay = conv_weightDecay, maxNorm = conv_maxNorm,
in_chans = in_chans, dropout = eegn_dropout)
block1 = Lambda(lambda x: x[:,:,-1,:])(block1)
# Sliding window
sw_concat = [] # to store concatenated or averaged sliding window outputs
for i in range(n_windows):
st = i
end = block1.shape[1]-n_windows+i+1
block2 = block1[:, st:end, :]
# Attention_model
if attention is not None:
if (attention == 'se' or attention == 'cbam'):
block2 = Permute((2, 1))(block2) # shape=(None, 32, 16)
block2 = attention_block(block2, attention)
block2 = Permute((2, 1))(block2) # shape=(None, 16, 32)
else: block2 = attention_block(block2, attention)
# Temporal convolutional network (TCN)
block3 = TCN_block_(input_layer = block2, input_dimension = F2, depth = tcn_depth,
kernel_size = tcn_kernelSize, filters = tcn_filters,
weightDecay = conv_weightDecay, maxNorm = conv_maxNorm,
dropout = tcn_dropout, activation = tcn_activation)
# Get feature maps of the last sequence
block3 = Lambda(lambda x: x[:,-1,:])(block3)
# Outputs of sliding window: Average_after_dense or concatenate_then_dense
if(fuse == 'average'):
sw_concat.append(Dense(n_classes, kernel_regularizer=L2(dense_weightDecay))(block3))
elif(fuse == 'concat'):
if i == 0:
sw_concat = block3
else:
sw_concat = Concatenate()([sw_concat, block3])
if(fuse == 'average'):
if len(sw_concat) > 1: # more than one window
sw_concat = tf.keras.layers.Average()(sw_concat[:])
else: # one window (# windows = 1)
sw_concat = sw_concat[0]
elif(fuse == 'concat'):
sw_concat = Dense(n_classes, kernel_regularizer=L2(dense_weightDecay))(sw_concat)
if from_logits: # No activation here because we are using from_logits=True
out = Activation('linear', name = 'linear')(sw_concat)
else: # Using softmax activation
out = Activation('softmax', name = 'softmax')(sw_concat)
return Model(inputs = input_1, outputs = out)
#%% Convolutional (CV) block used in the ATCNet model
def Conv_block(input_layer, F1=4, kernLength=64, poolSize=8, D=2, in_chans=22, dropout=0.1):
""" Conv_block
Notes
-----
This block is the same as EEGNet with SeparableConv2D replaced by Conv2D
The original code for this model is available at: https://github.com/vlawhern/arl-eegmodels
See details at https://arxiv.org/abs/1611.08024
"""
F2= F1*D
block1 = Conv2D(F1, (kernLength, 1), padding = 'same',data_format='channels_last',use_bias = False)(input_layer)
block1 = BatchNormalization(axis = -1)(block1)
block2 = DepthwiseConv2D((1, in_chans), use_bias = False,
depth_multiplier = D,
data_format='channels_last',
depthwise_constraint = max_norm(1.))(block1)
block2 = BatchNormalization(axis = -1)(block2)
block2 = Activation('elu')(block2)
block2 = AveragePooling2D((8,1),data_format='channels_last')(block2)
block2 = Dropout(dropout)(block2)
block3 = Conv2D(F2, (16, 1),
data_format='channels_last',
use_bias = False, padding = 'same')(block2)
block3 = BatchNormalization(axis = -1)(block3)
block3 = Activation('elu')(block3)
block3 = AveragePooling2D((poolSize,1),data_format='channels_last')(block3)
block3 = Dropout(dropout)(block3)
return block3
def Conv_block_(input_layer, F1=4, kernLength=64, poolSize=8, D=2, in_chans=22,
weightDecay = 0.009, maxNorm = 0.6, dropout=0.25):
""" Conv_block
Notes
-----
using different regularization methods.
"""
F2= F1*D
block1 = Conv2D(F1, (kernLength, 1), padding = 'same', data_format='channels_last',
kernel_regularizer=L2(weightDecay),
# In a Conv2D layer with data_format="channels_last", the weight tensor has shape
# (rows, cols, input_depth, output_depth), set axis to [0, 1, 2] to constrain
# the weights of each filter tensor of size (rows, cols, input_depth).
kernel_constraint = max_norm(maxNorm, axis=[0,1,2]),
use_bias = False)(input_layer)
block1 = BatchNormalization(axis = -1)(block1) # bn_axis = -1 if data_format() == 'channels_last' else 1
block2 = DepthwiseConv2D((1, in_chans),
depth_multiplier = D,
data_format='channels_last',
depthwise_regularizer=L2(weightDecay),
depthwise_constraint = max_norm(maxNorm, axis=[0,1,2]),
use_bias = False)(block1)
block2 = BatchNormalization(axis = -1)(block2)
block2 = Activation('elu')(block2)
block2 = AveragePooling2D((8,1),data_format='channels_last')(block2)
block2 = Dropout(dropout)(block2)
block3 = Conv2D(F2, (16, 1),
data_format='channels_last',
kernel_regularizer=L2(weightDecay),
kernel_constraint = max_norm(maxNorm, axis=[0,1,2]),
use_bias = False, padding = 'same')(block2)
block3 = BatchNormalization(axis = -1)(block3)
block3 = Activation('elu')(block3)
block3 = AveragePooling2D((poolSize,1),data_format='channels_last')(block3)
block3 = Dropout(dropout)(block3)
return block3
#%% Temporal convolutional (TC) block used in the ATCNet model
def TCN_block(input_layer,input_dimension,depth,kernel_size,filters,dropout,activation='relu'):
""" TCN_block from Bai et al 2018
Temporal Convolutional Network (TCN)
Notes
-----
THe original code available at https://github.com/locuslab/TCN/blob/master/TCN/tcn.py
This implementation has a slight modification from the original code
and it is taken from the code by Ingolfsson et al at https://github.com/iis-eth-zurich/eeg-tcnet
See details at https://arxiv.org/abs/2006.00622
References
----------
.. Bai, S., Kolter, J. Z., & Koltun, V. (2018).
An empirical evaluation of generic convolutional and recurrent networks
for sequence modeling.
arXiv preprint arXiv:1803.01271.
"""
block = Conv1D(filters,kernel_size=kernel_size,dilation_rate=1,activation='linear',
padding = 'causal',kernel_initializer='he_uniform')(input_layer)
block = BatchNormalization()(block)
block = Activation(activation)(block)
block = Dropout(dropout)(block)
block = Conv1D(filters,kernel_size=kernel_size,dilation_rate=1,activation='linear',
padding = 'causal',kernel_initializer='he_uniform')(block)
block = BatchNormalization()(block)
block = Activation(activation)(block)
block = Dropout(dropout)(block)
if(input_dimension != filters):
conv = Conv1D(filters,kernel_size=1,padding='same')(input_layer)
added = Add()([block,conv])
else:
added = Add()([block,input_layer])
out = Activation(activation)(added)
for i in range(depth-1):
block = Conv1D(filters,kernel_size=kernel_size,dilation_rate=2**(i+1),activation='linear',
padding = 'causal',kernel_initializer='he_uniform')(out)
block = BatchNormalization()(block)
block = Activation(activation)(block)
block = Dropout(dropout)(block)
block = Conv1D(filters,kernel_size=kernel_size,dilation_rate=2**(i+1),activation='linear',
padding = 'causal',kernel_initializer='he_uniform')(block)
block = BatchNormalization()(block)
block = Activation(activation)(block)
block = Dropout(dropout)(block)
added = Add()([block, out])
out = Activation(activation)(added)
return out
def TCN_block_(input_layer,input_dimension,depth,kernel_size,filters, dropout,
weightDecay = 0.009, maxNorm = 0.6, activation='relu'):
""" TCN_block from Bai et al 2018
Temporal Convolutional Network (TCN)
Notes
-----
using different regularization methods
"""
block = Conv1D(filters, kernel_size=kernel_size, dilation_rate=1, activation='linear',
kernel_regularizer=L2(weightDecay),
kernel_constraint = max_norm(maxNorm, axis=[0,1]),
padding = 'causal',kernel_initializer='he_uniform')(input_layer)
block = BatchNormalization()(block)
block = Activation(activation)(block)
block = Dropout(dropout)(block)
block = Conv1D(filters,kernel_size=kernel_size,dilation_rate=1,activation='linear',
kernel_regularizer=L2(weightDecay),
kernel_constraint = max_norm(maxNorm, axis=[0,1]),
padding = 'causal',kernel_initializer='he_uniform')(block)
block = BatchNormalization()(block)
block = Activation(activation)(block)
block = Dropout(dropout)(block)
if(input_dimension != filters):
conv = Conv1D(filters,kernel_size=1,
kernel_regularizer=L2(weightDecay),
kernel_constraint = max_norm(maxNorm, axis=[0,1]),
padding='same')(input_layer)
added = Add()([block,conv])
else:
added = Add()([block,input_layer])
out = Activation(activation)(added)
for i in range(depth-1):
block = Conv1D(filters,kernel_size=kernel_size,dilation_rate=2**(i+1),activation='linear',
kernel_regularizer=L2(weightDecay),
kernel_constraint = max_norm(maxNorm, axis=[0,1]),
padding = 'causal',kernel_initializer='he_uniform')(out)
block = BatchNormalization()(block)
block = Activation(activation)(block)
block = Dropout(dropout)(block)
block = Conv1D(filters,kernel_size=kernel_size,dilation_rate=2**(i+1),activation='linear',
kernel_regularizer=L2(weightDecay),
kernel_constraint = max_norm(maxNorm, axis=[0,1]),
padding = 'causal',kernel_initializer='he_uniform')(block)
block = BatchNormalization()(block)
block = Activation(activation)(block)
block = Dropout(dropout)(block)
added = Add()([block, out])
out = Activation(activation)(added)
return out
#%% Reproduced TCNet_Fusion model: https://doi.org/10.1016/j.bspc.2021.102826
def TCNet_Fusion(n_classes, Chans=22, Samples=1125, layers=2, kernel_s=4, filt=12,
dropout=0.3, activation='elu', F1=24, D=2, kernLength=32, dropout_eeg=0.3):
""" TCNet_Fusion model from Musallam et al 2021.
See details at https://doi.org/10.1016/j.bspc.2021.102826
Notes
-----
The initial values in this model are based on the values identified by
the authors
References
----------
.. Musallam, Y.K., AlFassam, N.I., Muhammad, G., Amin, S.U., Alsulaiman,
M., Abdul, W., Altaheri, H., Bencherif, M.A. and Algabri, M., 2021.
Electroencephalography-based motor imagery classification
using temporal convolutional network fusion.
Biomedical Signal Processing and Control, 69, p.102826.
"""
input1 = Input(shape = (1,Chans, Samples))
input2 = Permute((3,2,1))(input1)
regRate=.25
numFilters = F1
F2= numFilters*D
EEGNet_sep = EEGNet(input_layer=input2,F1=F1,kernLength=kernLength,D=D,Chans=Chans,dropout=dropout_eeg)
block2 = Lambda(lambda x: x[:,:,-1,:])(EEGNet_sep)
FC = Flatten()(block2)
outs = TCN_block(input_layer=block2,input_dimension=F2,depth=layers,kernel_size=kernel_s,filters=filt,dropout=dropout,activation=activation)
Con1 = Concatenate()([block2,outs])
out = Flatten()(Con1)
Con2 = Concatenate()([out,FC])
dense = Dense(n_classes, name = 'dense',kernel_constraint = max_norm(regRate))(Con2)
softmax = Activation('softmax', name = 'softmax')(dense)
return Model(inputs=input1,outputs=softmax)
#%% Reproduced EEGTCNet model: https://arxiv.org/abs/2006.00622
def EEGTCNet(n_classes, Chans=22, Samples=1125, layers=2, kernel_s=4, filt=12, dropout=0.3, activation='elu', F1=8, D=2, kernLength=32, dropout_eeg=0.2):
""" EEGTCNet model from Ingolfsson et al 2020.
See details at https://arxiv.org/abs/2006.00622
The original code for this model is available at https://github.com/iis-eth-zurich/eeg-tcnet
Notes
-----
The initial values in this model are based on the values identified by the authors
References
----------
.. Ingolfsson, T. M., Hersche, M., Wang, X., Kobayashi, N.,
Cavigelli, L., & Benini, L. (2020, October).
Eeg-tcnet: An accurate temporal convolutional network
for embedded motor-imagery brain–machine interfaces.
In 2020 IEEE International Conference on Systems,
Man, and Cybernetics (SMC) (pp. 2958-2965). IEEE.
"""
input1 = Input(shape = (1,Chans, Samples))
input2 = Permute((3,2,1))(input1)
regRate=.25
numFilters = F1
F2= numFilters*D
EEGNet_sep = EEGNet(input_layer=input2,F1=F1,kernLength=kernLength,D=D,Chans=Chans,dropout=dropout_eeg)
block2 = Lambda(lambda x: x[:,:,-1,:])(EEGNet_sep)
outs = TCN_block(input_layer=block2,input_dimension=F2,depth=layers,kernel_size=kernel_s,filters=filt,dropout=dropout,activation=activation)
out = Lambda(lambda x: x[:,-1,:])(outs)
dense = Dense(n_classes, name = 'dense',kernel_constraint = max_norm(regRate))(out)
softmax = Activation('softmax', name = 'softmax')(dense)
return Model(inputs=input1,outputs=softmax)
#%% Reproduced MBEEG_SENet model: https://doi.org/10.3390/diagnostics12040995
def MBEEG_SENet(nb_classes, Chans, Samples, D=2):
""" MBEEG_SENet model from Altuwaijri et al 2022.
See details at https://doi.org/10.3390/diagnostics12040995
Notes
-----
The initial values in this model are based on the values identified by
the authors
References
----------
.. G. Altuwaijri, G. Muhammad, H. Altaheri, & M. Alsulaiman.
A Multi-Branch Convolutional Neural Network with Squeeze-and-Excitation
Attention Blocks for EEG-Based Motor Imagery Signals Classification.
Diagnostics, 12(4), 995, (2022).
https://doi.org/10.3390/diagnostics12040995
"""
input1 = Input(shape = (1,Chans, Samples))
input2 = Permute((3,2,1))(input1)
regRate=.25
EEGNet_sep1 = EEGNet(input_layer=input2, F1=4, kernLength=16, D=D, Chans=Chans, dropout=0)
EEGNet_sep2 = EEGNet(input_layer=input2, F1=8, kernLength=32, D=D, Chans=Chans, dropout=0.1)
EEGNet_sep3 = EEGNet(input_layer=input2, F1=16, kernLength=64, D=D, Chans=Chans, dropout=0.2)
SE1 = attention_block(EEGNet_sep1, 'se', ratio=4)
SE2 = attention_block(EEGNet_sep2, 'se', ratio=4)
SE3 = attention_block(EEGNet_sep3, 'se', ratio=2)
FC1 = Flatten()(SE1)
FC2 = Flatten()(SE2)
FC3 = Flatten()(SE3)
CON = Concatenate()([FC1,FC2,FC3])
dense1 = Dense(nb_classes, name = 'dense1',kernel_constraint = max_norm(regRate))(CON)
softmax = Activation('softmax', name = 'softmax')(dense1)
return Model(inputs=input1,outputs=softmax)
#%% Reproduced EEGNeX model: https://arxiv.org/abs/2207.12369
def EEGNeX_8_32(n_timesteps, n_features, n_outputs):
""" EEGNeX model from Chen et al 2022.
See details at https://arxiv.org/abs/2207.12369
The original code for this model is available at https://github.com/chenxiachan/EEGNeX
References
----------
.. Chen, X., Teng, X., Chen, H., Pan, Y., & Geyer, P. (2022).
Toward reliable signals decoding for electroencephalogram:
A benchmark study to EEGNeX. arXiv preprint arXiv:2207.12369.
"""
model = Sequential()
model.add(Input(shape=(1, n_features, n_timesteps)))
model.add(Conv2D(filters=8, kernel_size=(1, 32), use_bias = False, padding='same', data_format="channels_first"))
model.add(LayerNormalization())
model.add(Activation(activation='elu'))
model.add(Conv2D(filters=32, kernel_size=(1, 32), use_bias = False, padding='same', data_format="channels_first"))
model.add(LayerNormalization())
model.add(Activation(activation='elu'))
model.add(DepthwiseConv2D(kernel_size=(n_features, 1), depth_multiplier=2, use_bias = False, depthwise_constraint=max_norm(1.), data_format="channels_first"))
model.add(LayerNormalization())
model.add(Activation(activation='elu'))
model.add(AveragePooling2D(pool_size=(1, 4), padding='same', data_format="channels_first"))
model.add(Dropout(0.5))
model.add(Conv2D(filters=32, kernel_size=(1, 16), use_bias = False, padding='same', dilation_rate=(1, 2), data_format='channels_first'))
model.add(LayerNormalization())
model.add(Activation(activation='elu'))
model.add(Conv2D(filters=8, kernel_size=(1, 16), use_bias = False, padding='same', dilation_rate=(1, 4), data_format='channels_first'))
model.add(LayerNormalization())
model.add(Activation(activation='elu'))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(n_outputs, kernel_constraint=max_norm(0.25)))
model.add(Activation(activation='softmax'))
# save a plot of the model
# plot_model(model, show_shapes=True, to_file='EEGNeX_8_32.png')
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
#%% Reproduced EEGNet model: https://arxiv.org/abs/1611.08024
def EEGNet_classifier(n_classes, Chans=22, Samples=1125, F1=8, D=2, kernLength=64, dropout_eeg=0.25):
input1 = Input(shape = (1,Chans, Samples))
input2 = Permute((3,2,1))(input1)
regRate=.25
eegnet = EEGNet(input_layer=input2, F1=F1, kernLength=kernLength, D=D, Chans=Chans, dropout=dropout_eeg)
eegnet = Flatten()(eegnet)
dense = Dense(n_classes, name = 'dense',kernel_constraint = max_norm(regRate))(eegnet)
softmax = Activation('softmax', name = 'softmax')(dense)
return Model(inputs=input1, outputs=softmax)
def EEGNet(input_layer, F1=8, kernLength=64, D=2, Chans=22, dropout=0.25):
""" EEGNet model from Lawhern et al 2018
See details at https://arxiv.org/abs/1611.08024
The original code for this model is available at: https://github.com/vlawhern/arl-eegmodels
Notes
-----
The initial values in this model are based on the values identified by the authors
References
----------
.. Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon,
S. M., Hung, C. P., & Lance, B. J. (2018).
EEGNet: A Compact Convolutional Network for EEG-based
Brain-Computer Interfaces.
arXiv preprint arXiv:1611.08024.
"""
F2= F1*D
block1 = Conv2D(F1, (kernLength, 1), padding = 'same',data_format='channels_last',use_bias = False)(input_layer)
block1 = BatchNormalization(axis = -1)(block1)
block2 = DepthwiseConv2D((1, Chans), use_bias = False,
depth_multiplier = D,
data_format='channels_last',
depthwise_constraint = max_norm(1.))(block1)
block2 = BatchNormalization(axis = -1)(block2)
block2 = Activation('elu')(block2)
block2 = AveragePooling2D((8,1),data_format='channels_last')(block2)
block2 = Dropout(dropout)(block2)
block3 = SeparableConv2D(F2, (16, 1),
data_format='channels_last',
use_bias = False, padding = 'same')(block2)
block3 = BatchNormalization(axis = -1)(block3)
block3 = Activation('elu')(block3)
block3 = AveragePooling2D((8,1),data_format='channels_last')(block3)
block3 = Dropout(dropout)(block3)
return block3
#%% Reproduced DeepConvNet model: https://doi.org/10.1002/hbm.23730
def DeepConvNet(nb_classes, Chans = 64, Samples = 256,
dropoutRate = 0.5):
""" Keras implementation of the Deep Convolutional Network as described in
Schirrmeister et. al. (2017), Human Brain Mapping.
See details at https://onlinelibrary.wiley.com/doi/full/10.1002/hbm.23730
The original code for this model is available at: https://github.com/braindecode/braindecode
Notes
-----
The initial values in this model are based on the values identified by the authors
This implementation is taken from code by the Army Research Laboratory (ARL)
at https://github.com/vlawhern/arl-eegmodels
References
----------
.. Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J.,
Glasstetter, M., Eggensperger, K., Tangermann, M., ... & Ball, T. (2017).
Deep learning with convolutional neural networks for EEG decoding
and visualization. Human brain mapping, 38(11), 5391-5420.
"""
# start the model
# input_main = Input((Chans, Samples, 1))
input_main = Input((1, Chans, Samples))
input_2 = Permute((2,3,1))(input_main)
block1 = Conv2D(25, (1, 10),
input_shape=(Chans, Samples, 1),
kernel_constraint = max_norm(2., axis=(0,1,2)))(input_2)
block1 = Conv2D(25, (Chans, 1),
kernel_constraint = max_norm(2., axis=(0,1,2)))(block1)
block1 = BatchNormalization(epsilon=1e-05, momentum=0.9)(block1)
block1 = Activation('elu')(block1)
block1 = MaxPooling2D(pool_size=(1, 3), strides=(1, 3))(block1)
block1 = Dropout(dropoutRate)(block1)
block2 = Conv2D(50, (1, 10),
kernel_constraint = max_norm(2., axis=(0,1,2)))(block1)
block2 = BatchNormalization(epsilon=1e-05, momentum=0.9)(block2)
block2 = Activation('elu')(block2)
block1 = MaxPooling2D(pool_size=(1, 3), strides=(1, 3))(block1)
block2 = Dropout(dropoutRate)(block2)
block3 = Conv2D(100, (1, 10),
kernel_constraint = max_norm(2., axis=(0,1,2)))(block2)
block3 = BatchNormalization(epsilon=1e-05, momentum=0.9)(block3)
block3 = Activation('elu')(block3)
block1 = MaxPooling2D(pool_size=(1, 3), strides=(1, 3))(block1)
block3 = Dropout(dropoutRate)(block3)
block4 = Conv2D(200, (1, 10),
kernel_constraint = max_norm(2., axis=(0,1,2)))(block3)
block4 = BatchNormalization(epsilon=1e-05, momentum=0.9)(block4)
block4 = Activation('elu')(block4)
block1 = MaxPooling2D(pool_size=(1, 3), strides=(1, 3))(block1)
block4 = Dropout(dropoutRate)(block4)
flatten = Flatten()(block4)
dense = Dense(nb_classes, kernel_constraint = max_norm(0.5))(flatten)
softmax = Activation('softmax')(dense)
return Model(inputs=input_main, outputs=softmax)
#%% need these for ShallowConvNet
def square(x):
return K.square(x)
def log(x):
return K.log(K.clip(x, min_value = 1e-7, max_value = 10000))
#%% Reproduced ShallowConvNet model: https://doi.org/10.1002/hbm.23730
def ShallowConvNet(nb_classes, Chans = 64, Samples = 128, dropoutRate = 0.5):
""" Keras implementation of the Shallow Convolutional Network as described
in Schirrmeister et. al. (2017), Human Brain Mapping.
See details at https://onlinelibrary.wiley.com/doi/full/10.1002/hbm.23730
The original code for this model is available at: https://github.com/braindecode/braindecode
Notes
-----
The initial values in this model are based on the values identified by the authors
This implementation is taken from code by the Army Research Laboratory (ARL)
at https://github.com/vlawhern/arl-eegmodels
References
----------
.. Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J.,
Glasstetter, M., Eggensperger, K., Tangermann, M., ... & Ball, T. (2017).
Deep learning with convolutional neural networks for EEG decoding
and visualization. Human brain mapping, 38(11), 5391-5420.
"""
# start the model
# input_main = Input((Chans, Samples, 1))
input_main = Input((1, Chans, Samples))
input_2 = Permute((2,3,1))(input_main)
block1 = Conv2D(40, (1, 25),
input_shape=(Chans, Samples, 1),
kernel_constraint = max_norm(2., axis=(0,1,2)))(input_2)
block1 = Conv2D(40, (Chans, 1), use_bias=False,
kernel_constraint = max_norm(2., axis=(0,1,2)))(block1)
block1 = BatchNormalization(epsilon=1e-05, momentum=0.9)(block1)
block1 = Activation(square)(block1)
block1 = AveragePooling2D(pool_size=(1, 75), strides=(1, 15))(block1)
block1 = Activation(log)(block1)
block1 = Dropout(dropoutRate)(block1)
flatten = Flatten()(block1)
dense = Dense(nb_classes, kernel_constraint = max_norm(0.5))(flatten)
softmax = Activation('softmax')(dense)
return Model(inputs=input_main, outputs=softmax)