-
Notifications
You must be signed in to change notification settings - Fork 25
/
preprocess.py
366 lines (296 loc) · 14.6 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
"""
Copyright (C) 2022 King Saud University, Saudi Arabia
SPDX-License-Identifier: Apache-2.0
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Author: Hamdi Altaheri
"""
# Dataset BCI Competition IV-2a is available at
# http://bnci-horizon-2020.eu/database/data-sets
import numpy as np
import scipy.io as sio
from tensorflow.keras.utils import to_categorical
from sklearn.preprocessing import StandardScaler
from sklearn.utils import shuffle
# We need the following function to load and preprocess the High Gamma Dataset
# from preprocess_HGD import load_HGD_data
#%%
def load_data_LOSO (data_path, subject, dataset):
""" Loading and Dividing of the data set based on the
'Leave One Subject Out' (LOSO) evaluation approach.
LOSO is used for Subject-independent evaluation.
In LOSO, the model is trained and evaluated by several folds, equal to the
number of subjects, and for each fold, one subject is used for evaluation
and the others for training. The LOSO evaluation technique ensures that
separate subjects (not visible in the training data) are usedto evaluate
the model.
Parameters
----------
data_path: string
dataset path
# Dataset BCI Competition IV-2a is available at
# http://bnci-horizon-2020.eu/database/data-sets
subject: int
number of subject in [1, .. ,9/14]
Here, the subject data is used test the model and other subjects data
for training
"""
X_train, y_train = [], []
for sub in range (0,9):
path = data_path+'s' + str(sub+1) + '/'
if (dataset == 'BCI2a'):
X1, y1 = load_BCI2a_data(path, sub+1, True)
X2, y2 = load_BCI2a_data(path, sub+1, False)
elif (dataset == 'CS2R'):
X1, y1, _, _, _ = load_CS2R_data_v2(path, sub, True)
X2, y2, _, _, _ = load_CS2R_data_v2(path, sub, False)
# elif (dataset == 'HGD'):
# X1, y1 = load_HGD_data(path, sub+1, True)
# X2, y2 = load_HGD_data(path, sub+1, False)
X = np.concatenate((X1, X2), axis=0)
y = np.concatenate((y1, y2), axis=0)
if (sub == subject):
X_test = X
y_test = y
elif (X_train == []):
X_train = X
y_train = y
else:
X_train = np.concatenate((X_train, X), axis=0)
y_train = np.concatenate((y_train, y), axis=0)
return X_train, y_train, X_test, y_test
#%%
def load_BCI2a_data(data_path, subject, training, all_trials = True):
""" Loading and Dividing of the data set based on the subject-specific
(subject-dependent) approach.
In this approach, we used the same training and testing dataas the original
competition, i.e., 288 x 9 trials in session 1 for training,
and 288 x 9 trials in session 2 for testing.
Parameters
----------
data_path: string
dataset path
# Dataset BCI Competition IV-2a is available on
# http://bnci-horizon-2020.eu/database/data-sets
subject: int
number of subject in [1, .. ,9]
training: bool
if True, load training data
if False, load testing data
all_trials: bool
if True, load all trials
if False, ignore trials with artifacts
"""
# Define MI-trials parameters
n_channels = 22
n_tests = 6*48
window_Length = 7*250
# Define MI trial window
fs = 250 # sampling rate
t1 = int(1.5*fs) # start time_point
t2 = int(6*fs) # end time_point
class_return = np.zeros(n_tests)
data_return = np.zeros((n_tests, n_channels, window_Length))
NO_valid_trial = 0
if training:
a = sio.loadmat(data_path+'A0'+str(subject)+'T.mat')
else:
a = sio.loadmat(data_path+'A0'+str(subject)+'E.mat')
a_data = a['data']
for ii in range(0,a_data.size):
a_data1 = a_data[0,ii]
a_data2= [a_data1[0,0]]
a_data3= a_data2[0]
a_X = a_data3[0]
a_trial = a_data3[1]
a_y = a_data3[2]
a_artifacts = a_data3[5]
for trial in range(0,a_trial.size):
if(a_artifacts[trial] != 0 and not all_trials):
continue
data_return[NO_valid_trial,:,:] = np.transpose(a_X[int(a_trial[trial]):(int(a_trial[trial])+window_Length),:22])
class_return[NO_valid_trial] = int(a_y[trial])
NO_valid_trial +=1
data_return = data_return[0:NO_valid_trial, :, t1:t2]
class_return = class_return[0:NO_valid_trial]
class_return = (class_return-1).astype(int)
return data_return, class_return
#%%
import json
from mne.io import read_raw_edf
from dateutil.parser import parse
import glob as glob
from datetime import datetime
def load_CS2R_data_v2(data_path, subject, training,
classes_labels = ['Fingers', 'Wrist','Elbow','Rest'],
all_trials = True):
""" Loading training/testing data for the CS2R motor imagery dataset
for a specific subject
Parameters
----------
data_path: string
dataset path
subject: int
number of subject in [1, .. ,9]
training: bool
if True, load training data
if False, load testing data
classes_labels: tuple
classes of motor imagery returned by the method (default: all)
"""
# Get all subjects files with .edf format.
subjectFiles = glob.glob(data_path + 'S_*/')
# Get all subjects numbers sorted without duplicates.
subjectNo = list(dict.fromkeys(sorted([x[len(x)-4:len(x)-1] for x in subjectFiles])))
# print(SubjectNo[subject].zfill(3))
if training: session = 1
else: session = 2
num_runs = 5
sfreq = 250 #250
mi_duration = 4.5 #4.5
data = np.zeros([num_runs*51, 32, int(mi_duration*sfreq)])
classes = np.zeros(num_runs * 51)
valid_trails = 0
onset = np.zeros([num_runs, 51])
duration = np.zeros([num_runs, 51])
description = np.zeros([num_runs, 51])
#Loop to the first 4 runs.
CheckFiles = glob.glob(data_path + 'S_' + subjectNo[subject].zfill(3) + '/S' + str(session) + '/*.edf')
if not CheckFiles:
return
for runNo in range(num_runs):
valid_trails_in_run = 0
#Get .edf and .json file for following subject and run.
EDFfile = glob.glob(data_path + 'S_' + subjectNo[subject].zfill(3) + '/S' + str(session) + '/S_'+subjectNo[subject].zfill(3)+'_'+str(session)+str(runNo+1)+'*.edf')
JSONfile = glob.glob(data_path + 'S_'+subjectNo[subject].zfill(3) + '/S'+ str(session) +'/S_'+subjectNo[subject].zfill(3)+'_'+str(session)+str(runNo+1)+'*.json')
#Check if EDFfile list is empty
if not EDFfile:
continue
# We use mne.read_raw_edf to read in the .edf EEG files
raw = read_raw_edf(str(EDFfile[0]), preload=True, verbose=False)
# Opening JSON file of the current RUN.
f = open(JSONfile[0],)
# returns JSON object as a dictionary
JSON = json.load(f)
#Number of Keystrokes Markers
keyStrokes = np.min([len(JSON['Markers']), 51]) #len(JSON['Markers']), to avoid extra markers by accident
# MarkerStart = JSON['Markers'][0]['startDatetime']
#Get Start time of marker
date_string = EDFfile[0][-21:-4]
datetime_format = "%d.%m.%y_%H.%M.%S"
startRecordTime = datetime.strptime(date_string, datetime_format).astimezone()
currentTrialNo = 0 # 1 = fingers, 2 = Wrist, 3 = Elbow, 4 = rest
if(runNo == 4):
currentTrialNo = 4
ch_names = raw.info['ch_names'][4:36]
# filter the data
raw.filter(4., 50., fir_design='firwin')
raw = raw.copy().pick_channels(ch_names = ch_names)
raw = raw.copy().resample(sfreq = sfreq)
fs = raw.info['sfreq']
for trail in range(keyStrokes):
# class for current trial
if(runNo == 4 ): # In Run 5 all trials are 'reset'
currentTrialNo = 4
elif (currentTrialNo == 3): # Set the class of current trial to 1 'Fingers'
currentTrialNo = 1
else: # In Runs 1-4, 1st trial is 1 'Fingers', 2nd trial is 2 'Wrist', and 3rd trial is 'Elbow', and repeat ('Fingers', 'Wrist', 'Elbow', ..)
currentTrialNo = currentTrialNo + 1
trailDuration = 8
trailTime = parse(JSON['Markers'][trail]['startDatetime'])
trailStart = trailTime - startRecordTime
trailStart = trailStart.seconds
start = trailStart + (6 - mi_duration)
stop = trailStart + 6
if (trail < keyStrokes-1):
trailDuration = parse(JSON['Markers'][trail+1]['startDatetime']) - parse(JSON['Markers'][trail]['startDatetime'])
trailDuration = trailDuration.seconds + (trailDuration.microseconds/1000000)
if (trailDuration < 7.5) or (trailDuration > 8.5):
print('In Session: {} - Run: {}, Trail no: {} is skipped due to short/long duration of: {:.2f}'.format(session, (runNo+1), (trail+1), trailDuration))
if (trailDuration > 14 and trailDuration < 18):
if (currentTrialNo == 3): currentTrialNo = 1
else: currentTrialNo = currentTrialNo + 1
continue
elif (trail == keyStrokes-1):
trailDuration = raw[0, int(trailStart*int(fs)):int((trailStart+8)*int(fs))][0].shape[1]/fs
if (trailDuration < 7.8) :
print('In Session: {} - Run: {}, Trail no: {} is skipped due to short/long duration of: {:.2f}'.format(session, (runNo+1), (trail+1), trailDuration))
continue
MITrail = raw[:32, int(start*int(fs)):int(stop*int(fs))][0]
if (MITrail.shape[1] != data.shape[2]):
print('Error in Session: {} - Run: {}, Trail no: {} due to the lost of data'.format(session, (runNo+1), (trail+1)))
return
# select some specific classes
if ((('Fingers' in classes_labels) and (currentTrialNo==1)) or
(('Wrist' in classes_labels) and (currentTrialNo==2)) or
(('Elbow' in classes_labels) and (currentTrialNo==3)) or
(('Rest' in classes_labels) and (currentTrialNo==4))):
data[valid_trails] = MITrail
classes[valid_trails] = currentTrialNo
# For Annotations
onset[runNo, valid_trails_in_run] = start
duration[runNo, valid_trails_in_run] = trailDuration - (6 - mi_duration)
description[runNo, valid_trails_in_run] = currentTrialNo
valid_trails += 1
valid_trails_in_run += 1
data = data[0:valid_trails, :, :]
classes = classes[0:valid_trails]
classes = (classes-1).astype(int)
return data, classes, onset, duration, description
#%%
def standardize_data(X_train, X_test, channels):
# X_train & X_test :[Trials, MI-tasks, Channels, Time points]
for j in range(channels):
scaler = StandardScaler()
scaler.fit(X_train[:, 0, j, :])
X_train[:, 0, j, :] = scaler.transform(X_train[:, 0, j, :])
X_test[:, 0, j, :] = scaler.transform(X_test[:, 0, j, :])
return X_train, X_test
#%%
def get_data(path, subject, dataset = 'BCI2a', classes_labels = 'all', LOSO = False, isStandard = True, isShuffle = True):
# Load and split the dataset into training and testing
if LOSO:
""" Loading and Dividing of the dataset based on the
'Leave One Subject Out' (LOSO) evaluation approach. """
X_train, y_train, X_test, y_test = load_data_LOSO(path, subject, dataset)
else:
""" Loading and Dividing of the data set based on the subject-specific
(subject-dependent) approach.
In this approach, we used the same training and testing data as the original
competition, i.e., for BCI Competition IV-2a, 288 x 9 trials in session 1
for training, and 288 x 9 trials in session 2 for testing.
"""
if (dataset == 'BCI2a'):
path = path + 's{:}/'.format(subject+1)
X_train, y_train = load_BCI2a_data(path, subject+1, True)
X_test, y_test = load_BCI2a_data(path, subject+1, False)
elif (dataset == 'CS2R'):
X_train, y_train, _, _, _ = load_CS2R_data_v2(path, subject, True, classes_labels)
X_test, y_test, _, _, _ = load_CS2R_data_v2(path, subject, False, classes_labels)
# elif (dataset == 'HGD'):
# X_train, y_train = load_HGD_data(path, subject+1, True)
# X_test, y_test = load_HGD_data(path, subject+1, False)
else:
raise Exception("'{}' dataset is not supported yet!".format(dataset))
# shuffle the data
if isShuffle:
X_train, y_train = shuffle(X_train, y_train,random_state=42)
X_test, y_test = shuffle(X_test, y_test,random_state=42)
# Prepare training data
N_tr, N_ch, T = X_train.shape
X_train = X_train.reshape(N_tr, 1, N_ch, T)
y_train_onehot = to_categorical(y_train)
# Prepare testing data
N_tr, N_ch, T = X_test.shape
X_test = X_test.reshape(N_tr, 1, N_ch, T)
y_test_onehot = to_categorical(y_test)
# Standardize the data
if isStandard:
X_train, X_test = standardize_data(X_train, X_test, N_ch)
return X_train, y_train, y_train_onehot, X_test, y_test, y_test_onehot