-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathParser.h
727 lines (661 loc) · 22.2 KB
/
Parser.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
#pragma once
#include "AST.h"
#include "Scanner.h"
#include "Program.h"
#include "Terminal.h"
class Parser
{
Program t_program;
const bool is_interactive;
std::vector<Token*> tokens;
//Used to store extraneous, native types
HashTable<std::string, ObjectType*> uncooked_types;
/*
Here's how this is gonna work:
The Parser is going to semi-recursively iterate over the various grammar possibilities,
based on the formal grammar that we have (which is loosely based on how our grammar description formats it)
*/
std::vector<Scanner::OperationPrecedence> lowest_ops;
const Hashtable<BinaryExpression::bOps, Scanner::OperationPrecedence> bOp_to_precedence =
{
{BinaryExpression::bOps::Add,Scanner::OperationPrecedence::Term},
{BinaryExpression::bOps::Subtract,Scanner::OperationPrecedence::Term},
{BinaryExpression::bOps::Multiply,Scanner::OperationPrecedence::Factor},
{BinaryExpression::bOps::Divide,Scanner::OperationPrecedence::Factor},
//
{BinaryExpression::bOps::FloorDivide,Scanner::OperationPrecedence::Factor},
{BinaryExpression::bOps::Exponent,Scanner::OperationPrecedence::Power},
{BinaryExpression::bOps::Modulo,Scanner::OperationPrecedence::Factor},
//
{BinaryExpression::bOps::BitwiseAnd,Scanner::OperationPrecedence::Bitwise},
{BinaryExpression::bOps::BitwiseXor,Scanner::OperationPrecedence::Bitwise},
{BinaryExpression::bOps::BitwiseOr,Scanner::OperationPrecedence::Bitwise},
//
{BinaryExpression::bOps::ShiftLeft,Scanner::OperationPrecedence::Bitwise},
{BinaryExpression::bOps::ShiftRight,Scanner::OperationPrecedence::Bitwise},
//
{BinaryExpression::bOps::Concatenate,Scanner::OperationPrecedence::Concat},
//
{BinaryExpression::bOps::LessThan,Scanner::OperationPrecedence::Comparison},
{BinaryExpression::bOps::LessEquals,Scanner::OperationPrecedence::Comparison},
{BinaryExpression::bOps::Greater,Scanner::OperationPrecedence::Comparison},
{BinaryExpression::bOps::GreaterEquals,Scanner::OperationPrecedence::Comparison},
{BinaryExpression::bOps::Equals,Scanner::OperationPrecedence::Comparison},
{BinaryExpression::bOps::NotEquals,Scanner::OperationPrecedence::Comparison},
//
{BinaryExpression::bOps::LogicalAnd,Scanner::OperationPrecedence::Logical},
{BinaryExpression::bOps::LogicalOr,Scanner::OperationPrecedence::Logical},
{BinaryExpression::bOps::LogicalXor,Scanner::OperationPrecedence::Logical}
};
enum class BlockType {
Unknown, // ???
Function,
While,
If,
For,
Try,
Catch
};
int tokenheader; // Which Token # are we on?
//This whole thing is one big Turing machine, reading a roll of tokens in sequence, so having a master counter is important to the iteration.
//However, most functions have their own internal headers for subiteration, sometimes updating tokenheader on exit.
//This is unfortunately necessary due to the recursive and multi-stroke nature of this Parser and its grammar.
BinaryExpression::bOps readbOpOneChar (char* c)
{
switch (c[0])
{
//This Switch tries to keep the binOps in the order in which they appear in JoaoGrammar.txt.
case('+')://multichar needed
return BinaryExpression::bOps::Add;
break;
case('-')://multichar needed
return BinaryExpression::bOps::Subtract;
break;
case('*'):
return BinaryExpression::bOps::Multiply;
break;
case('/')://multichar
return BinaryExpression::bOps::Divide;
break;
case('^'):
return BinaryExpression::bOps::Exponent;
break;
case('%'):
return BinaryExpression::bOps::Modulo;
break;
case('&')://multichar needed
return BinaryExpression::bOps::BitwiseAnd;
break;
case('~')://multichar needed
return BinaryExpression::bOps::BitwiseXor;
break;
case('|')://multichar needed
return BinaryExpression::bOps::BitwiseOr;
break;
case('>')://multichar needed
return BinaryExpression::bOps::Greater;
break;
case('<')://multichar needed
return BinaryExpression::bOps::LessThan;
break;
default:
return BinaryExpression::bOps::NoOp;
}
return BinaryExpression::bOps::NoOp;
}
BinaryExpression::bOps readbOpTwoChar(char* c)
{
switch (c[1])
{
//This Switch tries to keep the binOps in the order in which they appear in JoaoGrammar.txt.
case('/'):
return BinaryExpression::bOps::FloorDivide;
break;
case('&')://&&
return BinaryExpression::bOps::LogicalAnd;
break;
case('~')://~~
return BinaryExpression::bOps::LogicalXor;
break;
case('|')://||
return BinaryExpression::bOps::LogicalOr;
break;
case('>')://>>
return BinaryExpression::bOps::ShiftRight;
break;
case('<')://<<
return BinaryExpression::bOps::ShiftLeft;
break;
case('='):
switch (c[0])
{
case('>'):// >=
return BinaryExpression::bOps::GreaterEquals;
case('<'):// <=
return BinaryExpression::bOps::LessEquals;
case('!'): // !=
return BinaryExpression::bOps::NotEquals;
case('='): // ==
return BinaryExpression::bOps::Equals;
default:
return BinaryExpression::bOps::NoOp;
}
break;
case('.'):
return BinaryExpression::bOps::Concatenate;
default:
return BinaryExpression::bOps::NoOp;
}
return BinaryExpression::bOps::NoOp;
}
AssignmentStatement::aOps symbol_to_aOp(SymbolToken* st)
{
char* c = st->get_symbol();
if (st->len == 1)
{
if (c[0] == '=')
{
return AssignmentStatement::aOps::Assign;
}
else
{
return AssignmentStatement::aOps::NoOp;
}
}
else
{
if (c[1] != '=')
return AssignmentStatement::aOps::NoOp;
switch (c[0])
{
case('+'):
return AssignmentStatement::aOps::AssignAdd;
case('-'):
return AssignmentStatement::aOps::AssignSubtract;
case('*'):
return AssignmentStatement::aOps::AssignMultiply;
case('/'):
return AssignmentStatement::aOps::AssignDivide;
default:
return AssignmentStatement::aOps::NoOp;
}
}
return AssignmentStatement::aOps::NoOp;
}
UnaryExpression::uOps symbol_to_uOp(SymbolToken* st)
{
if (st->len != 1)
return UnaryExpression::uOps::NoOp;
switch (st->get_symbol()[0])
{
case('!'):
return UnaryExpression::uOps::Not;
case('-'):
return UnaryExpression::uOps::Negate;
case('#'):
return UnaryExpression::uOps::Length;
case('~'):
return UnaryExpression::uOps::BitwiseNot;
default:
return UnaryExpression::uOps::NoOp;
}
}
ASTNode* readlvalue(int,int);
ASTNode* readUnary(int, int);
ASTNode* readPower(int, int);
ASTNode* readBinExp(Scanner::OperationPrecedence,int,int);
ASTNode* readExp(int,int);
//Here-there-update; does not update if no last bracket found
std::vector<Expression*> readBlock(BlockType, int, int);
//This one is a little weird: It's a where-there-update. FIXME: Make it not >:(
Expression* readStatement(BlockType, int&, int);
//Here-there-update; does not update if no last bracket found
std::vector<LocalAssignmentStatement*> readClassDef(int, int);
//Reads a strongly-expected LocalAssignment (of form, "Value x = 3" or whatever). Does not consume a semicolon.
LocalAssignmentStatement* readLocalAssignment(int, int);
AssignmentStatement::aOps readaOp(int here = 0, bool loud = true)
{
#ifdef LOUD_TOKENHEADER
std::cout << "readaOp starting at " << std::to_string(tokenheader) << std::endl;
#endif
Token* t;
if (here)
t = tokens[here];
else
t = tokens[tokenheader];
if (t->class_enum() != Token::cEnum::SymbolToken)
{
if(loud)
ParserError(t, "Unexpected Token when aOp was expected!");
return AssignmentStatement::aOps::NoOp;
}
AssignmentStatement::aOps auhp = symbol_to_aOp(static_cast<SymbolToken*>(t));
if (auhp == AssignmentStatement::aOps::NoOp)
ParserError(t, "Unexpected token when assignment operator was expected!");
if(!here)
++tokenheader;
#ifdef LOUD_TOKENHEADER
std::cout << "readaOp setting tokenheader to " << std::to_string(tokenheader) << std::endl;
#endif
return auhp;
}
BinaryExpression::bOps readbOp(SymbolToken* st)
{
char* symbol = st->get_symbol();
if (st->len == 1)
return readbOpOneChar(symbol);
else
return readbOpTwoChar(symbol);
return BinaryExpression::bOps::NoOp;
}
//Attempts to find a func access. All instances of it are optional; so just quietly returns its var_access arg upon failure.
//Here-there-update; here is the token directly following var_access
//func_access ::= (property | element)['(' explist ')'][func_access]
void readFuncAccess(ASTNode*& var_access, int here, int there)
{
int where = here;
for (; where <= there; ++where) // This is all here to handle repetitive Member and Index accesses.
//TODO: Make this for-loop a discrete function since it's called elsewhere as well
{
Token* propeller = tokens[where]; // PROPerty or ELLERment. I guess. Shut up.
switch (propeller->class_enum())
{
case(Token::cEnum::MemberToken):
{
++where;
//return new MemberAccess(scoped_access, readVarAccess(tokenheader, there)); // Doing just this would end up being right-associative, which for our purposes would be annoying to deal with interpreter-side.
//So we're going to do something else.
if (propeller->class_enum() != Token::cEnum::WordToken)
{
ParserError(propeller, "Unexpected Token when reading MemberAccess!");
}
var_access = new MemberAccess(var_access, new Identifier(static_cast<WordToken*>(tokens[where])->word));
continue;
}
case(Token::cEnum::PairSymbolToken):
{
PairSymbolToken pst = *static_cast<PairSymbolToken*>(propeller);
if (pst.t_pOp == PairSymbolToken::pairOp::Bracket)
{
int yonder = find_closing_pairlet(PairSymbolToken::pairOp::Bracket, where + 1);
var_access = new IndexAccess(var_access, readExp(where + 1, yonder - 1));
where = yonder;
continue;
}
//If it's a parenthesis then we're probably about to do a function call but, that's none of *our* business in readVarAccess() so just return
tokenheader = where;
return;
}
default: // I dunno what this is, just return what you have and hope the higher stacks know what it is
tokenheader = where;
return;
}
}
//A fluke of having the init statement be above-scope of the for-loop like this is that
//it actually increment once *past* what the condition is.
//like if the condition were "where < 5" then it'd be 5 here.
//So setting the tokenheader to where is valid here; that is genuinely the next token past what we parsed
//since we *ought* to be in the case that we genuinely consumed all the tokens from here to there.
tokenheader = where;
return;
}
// VAR_ACCESS ::=
// scoped_access | var_access property | var_access element
// scoped_access ::= './' Name | {'../'}'../' Name | '/' Name | Name
// property ::= {'.' Name }
// element ::= {'[' exp ']'}
//
// HERE-THERE-UPDATE!
ASTNode* readVarAccess( int here, int there)
{
#ifdef LOUD_TOKENHEADER
std::cout << "readVarAccess starting at " << std::to_string(here) << std::endl;
#endif
ASTNode* scoped_access = nullptr;
Token* t = tokens[here];
switch (t->class_enum())
{
case(Token::cEnum::DirectoryToken):
if (static_cast<DirectoryToken*>(t)->dir != "/" + Directory::lastword(static_cast<DirectoryToken*>(t)->dir))
ParserError(t, "Unexpected directory when variable access expected!");
scoped_access = new GlobalAccess(Directory::lastword(static_cast<DirectoryToken*>(t)->dir));
tokenheader = here + 1;
break;
case(Token::cEnum::WordToken): // Name
scoped_access = new Identifier(static_cast<WordToken*>(t)->word);
tokenheader = here + 1;
break;
case(Token::cEnum::ParentToken):
{
if (there == here || tokens[here + 1]->class_enum() != Token::cEnum::WordToken) {
//ParserError(t, "ParentToken found with no corresponding Name!");
scoped_access = new ParentGet();
tokenheader = here + 1;
}
else {
scoped_access = new ParentAccess(static_cast<WordToken*>(tokens[here + 1])->word);
tokenheader = here + 2;
}
break;
}
case(Token::cEnum::GrandparentToken):
{
int depth = 1;
for(int where = here +1; where <= there; ++where)
{
Token* tuk = tokens[where]; // KARH EN TUK
if (tuk->class_enum() == Token::cEnum::GrandparentToken)
{
++depth;
}
else if (tuk->class_enum() == Token::cEnum::WordToken)
{
scoped_access = new GrandparentAccess(depth, static_cast<WordToken*>(tuk)->word);
tokenheader = where + 1;
break;
}
else
{
ParserError(tuk, "Unexpected Token while reading GrandparentAccess!");
}
}
if(!scoped_access)
ParserError(t, "GrandparentToken found with no corresponding Name!");
break;
}
default:
ParserError(t, "Unexpected Token while reading scoped_access in readVarAccess()!");
}
if (tokenheader+1 > there) // If we can't access at least 2 more tokens
return scoped_access; // Just return the scoped_access find.
//Now lets check for property or element
int where = tokenheader;
for(; where <= there; ++where) // This is all here to handle repetitive Member and Index accesses.
{
Token* propeller = tokens.at(where); // PROPerty or ELLERment. I guess. Shut up.
switch (propeller->class_enum())
{
case(Token::cEnum::MemberToken):
{
++where;
//return new MemberAccess(scoped_access, readVarAccess(tokenheader, there)); // Doing just this would end up being right-associative, which for our purposes would be annoying to deal with interpreter-side.
//So we're going to do something else.
if(tokens.size() <= static_cast<size_t>(where)) UNLIKELY // why you gotta be daft like this mang
{
ParserError(tokens[where-1], "Unexpected EOF when reading MemberAccess!");
return scoped_access; // I guess idfk
}
if (tokens[where]->class_enum() != Token::cEnum::WordToken)
{
ParserError(tokens[where], "Unexpected Token when reading MemberAccess!");
}
scoped_access = new MemberAccess(scoped_access, new Identifier(static_cast<WordToken*>(tokens[where])->word));
continue;
}
case(Token::cEnum::PairSymbolToken):
{
PairSymbolToken pst = *static_cast<PairSymbolToken*>(propeller);
if (pst.t_pOp == PairSymbolToken::pairOp::Bracket)
{
int yonder = find_closing_pairlet(PairSymbolToken::pairOp::Bracket, where + 1);
scoped_access = new IndexAccess(scoped_access, readExp(where + 1, yonder - 1));
where = yonder;
continue;
}
//If it's a parenthesis then we're probably about to do a function call but, that's none of *our* business in readVarAccess() so just return
--where; // Make sure that hypothetical paren handler can actually see the paren
goto ACCESS_END;
}
default: // I dunno what this is, just return what you have and hope the higher stacks know what it is
--where;
goto ACCESS_END;
}
}
ACCESS_END:
if (where > there) // FIXME: Stop this from happening
tokenheader = there + 1;
else
tokenheader = where + 1;
return scoped_access;
}
/*
VARSTAT:
there's four ways of doing varstats: in the Local scope, Object Scope, or Global Scope. This block implements the last three.
Value x = 3; ## Set local variable to 3
/x = 3; ## Set global variable to 3
./x = 3; ## Set property of object we're in called x to 3
x = 3; ## Ambiguous, sets lowest-scoped x available to 3
*/
//Updates tokenheader via readExp().
AssignmentStatement* readAssignmentStatement(int here, int there)
{
ASTNode* id = readVarAccess(here, there);
AssignmentStatement::aOps aesop = readaOp();
ASTNode* rvalue = readExp(tokenheader, there);
return new AssignmentStatement(id, rvalue, aesop);
}
//A helper function for readArgs() that shouldn't really be called by anyone else
int find_comma(int here, int there)
{
for (int where = here; where <= there; ++where)
{
switch (tokens[where]->class_enum())
{
case(Token::cEnum::CommaToken):
return where;
case(Token::cEnum::PairSymbolToken): // This is function being called within this function call, I guess? Or perhaps a tableconstructor being used as a parameter.
//Regardless, we need to skip over it, as it may contain comma tokens that aren't for us.
where = find_closing_pairlet(static_cast<PairSymbolToken*>(tokens[where])->t_pOp, where + 1);
break;
default:
continue;
}
}
return 0; // Safe because it is impossible for the first token of a valid Jo�o program to be a CommaToken
}
//Here-there-update;
//assumes here < there
std::vector<ASTNode*> readArgs(int here, int there)
{
#ifdef LOUD_TOKENHEADER
std::cout << "readVarAccess starting at " << std::to_string(here) << std::endl;
#endif
int comma = find_comma(here, there);
if (!comma) // If comman't
return { readExp(here,there) };
//exp {, exp}
std::vector<ASTNode*> args{ readExp(here,comma - 1) };
tokenheader = here;
while (comma)
{
int newcomma = find_comma(comma + 1, there);
int yonder = (newcomma ? newcomma - 1 : there);
args.push_back(readExp(comma + 1, yonder));
comma = newcomma;
}
return args;
}
//Updates tokenheader to be one token ahead of $here.
ImmutableString readName(int here)
{
#ifdef LOUD_TOKENHEADER
std::cout << "readName starting at " << std::to_string(here) << std::endl;
#endif
Token* t = tokens[here];
if (t->class_enum() != Token::cEnum::WordToken)
{
ParserError(t, "Unexpected token found when WordToken was expected for Name!");
}
tokenheader = here + 1;
#ifdef LOUD_TOKENHEADER
std::cout << "readName setting tokenheader to " << std::to_string(tokenheader) << std::endl;
#endif
return static_cast<WordToken*>(t)->word;
}
// If no args, assumes tokenheader is pointing where it should. Increments tokenheader when given no args.
void consume_semicolon(Token* t = nullptr)
{
if (!t)
{
t = tokens[tokenheader];
++tokenheader;
}
switch (t->class_enum()) // This could be an if-statement but I've been switching like this everywhere to the point it feels like poor style to not do it here
{
case(Token::cEnum::EndLineToken):
return;
default:
ParserError(t, "Unexpected Token while attempting to consume EndLineToken!");
}
}
void consume_paren(bool open, Token* t = nullptr)
{
if (!t)
{
t = tokens[tokenheader];
++tokenheader;
}
switch (t->class_enum()) // This could be an if-statement but I've been switching like this everywhere to the point it feels like poor style to not do it here
{
case(Token::cEnum::PairSymbolToken):
{
PairSymbolToken pst = *static_cast<PairSymbolToken*>(t);
if (pst.is_start != open || pst.t_pOp != PairSymbolToken::pairOp::Paren)
{
if(open)
ParserError(t, "Unexpected PairSymbolToken while attempting to consume '('!");
else
ParserError(t, "Unexpected PairSymbolToken while attempting to consume ')'!");
}
return;
}
default:
if (open)
ParserError(t, "Unexpected Token while attempting to consume '('!");
else
ParserError(t, "Unexpected Token while attempting to consume ')'!");
}
}
void consume_open_brace(int here)
{
Token* t = tokens[here];
if (t->class_enum() != Token::cEnum::PairSymbolToken)
{
ParserError(t, "Unexpected token where open-brace was expected!");
}
PairSymbolToken pt = *static_cast<PairSymbolToken*>(t);
if (!pt.is_start || pt.t_pOp != PairSymbolToken::pairOp::Brace)
{
ParserError(t, "Unexpected token where open-brace was expected!");
}
}
//Parsetimes if it cannot find the semicolon.
size_t get_first_semicolon(int here, int there)
{
for (int where = here; where <= there; ++where)
{
Token* t = tokens[where];
if (t->class_enum() == Token::cEnum::EndLineToken)
return where;
}
ParserError(tokens[here], "Failed to find expected semicolon!");
return tokens.size() - 1;
}
//Does not parsetime; used for lookahead.
size_t find_first_semicolon(int here, int there)
{
for (int where = here; where <= there; ++where)
{
Token* t = tokens[where];
if (t->class_enum() == Token::cEnum::EndLineToken)
return where;
}
return 0; // Actually works since it is impossible for the first token to be a semicolon in a valid way, weirdly enough
}
//Does not update tokenheader, and so is a "wanderer" sorta function. Finds the closing pairlet token of the type desired.
int find_closing_pairlet(PairSymbolToken::pairOp pop, int here)
{
int count = 1;
for (size_t where = here; where < tokens.size(); ++where)
{
Token* t = tokens[where];
if (t->class_enum() != Token::cEnum::PairSymbolToken)
continue;
PairSymbolToken* pst = static_cast<PairSymbolToken*>(t);
if (pst->t_pOp != pop)
continue;
if (pst->is_start) // We'll also now need to find the closer for this one
{
++count;
continue;
}
--count;
if (!count)
{
//std::cout << "I return " << std::to_string(where);
return static_cast<int>(where);
}
}
ParserError(tokens[static_cast<size_t>(here)-1], "Unable to find closing pairlet for this open pairlet!");
return 0;
}
int find_aOp(int here, int there)
{
for (int where = here; where <= there; ++where)
{
Token* t = tokens[where];
if (t->class_enum() != Token::cEnum::SymbolToken)
continue;
if (symbol_to_aOp(static_cast<SymbolToken*>(t)) != AssignmentStatement::aOps::NoOp)
{
return where;
}
}
return 0;
}
protected:
//Does the nitty-gritty of filling out the function and objecttype tables.
void generate_object_tree(std::vector<ClassDefinition*>&);
public: // Parser doesn't have much of an API but it does have something
Parser(Scanner&t)
:is_interactive(t.is_interactive)
,tokens(std::move(t.tokens)) // This steals all the tokens from Scanner. Now, we are the ones responsible for deleting all these token pointers later on.
,lowest_ops(std::move(t.lowest_ops))
{
}
~Parser()
{
for(Token* t_ptr : tokens)
{
delete t_ptr;
}
}
void ParserError(Token* t, std::string what)
{
//This is just a basic setup while everything else is fleshed out.
Terminal::SetColor(std::cerr, Terminal::Color::Red);
Terminal::SetBold(std::cerr, true);
std::cerr << "Parser Error: ";
Terminal::ClearFormatting(std::cerr);
std::cerr << what << "\n";
if (t)
std::cerr << t->dump();
std::cerr << std::endl; // This is an emscripten thing. We need to make sure this is flushed.
if(is_interactive) {
t_program.is_malformed = true;
throw error::parser(what);
}
#ifdef JOAO_SAFE
throw error::parser(what);
#else
exit(1);
#endif
}
Program parse();
//Used for interactive mode and other similar contexts.
Function* try_parse_function();
bool is_statement();
ASTNode* parse_repl_expression(Program&);
//Allows outside programs to include extra "native" types.
void IncludeAlienType(ObjectType* ot);
};