-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathann.R
155 lines (99 loc) · 6.13 KB
/
ann.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#SCript to build random ANN (Feed-Forward) models
library(nnet)
library(devtools)
library(caret)
setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/")
source("totalconsumption.R")
# Data Set Preparation
anndataframe <- totalconsumption[,c(1:4,6:9,11,13)]
anndataframe <- anndataframe[-which(is.na(anndataframe$WeekBefore)),]
anndataframe$Month <- as.factor(month(anndataframe$Date))
anndataframe <- anndataframe[,c(1:7,9,10,8)]
dumsHour.ann <- dummy(anndataframe$Hour, sep = "_")
dumsMonth.ann <- dummy(anndataframe$Month, sep = "_")
dumsDayTipe.ann <- dummy(anndataframe$DayType, sep = "_")
dumsDayCategory.ann <- dummy(anndataframe$DayCategory, sep = "_")
anndataframe.dum <- anndataframe
anndataframe.dum <- cbind(anndataframe.dum, dumsHour.ann, dumsMonth.ann, dumsDayTipe.ann, dumsDayCategory.ann)
anndataframe.dum <- anndataframe.dum[,c(1:9,11:56,10)]
# ANN MODEL 1
rm(.Random.seed, envir=globalenv())
set.seed(123)
training.ann.1.idx <- createDataPartition(anndataframe.dum$Consumption, p = 0.7, list = FALSE)
training.ann.1 <- anndataframe.dum[training.ann.1.idx,]
testing.ann.1 <- anndataframe.dum[-training.ann.1.idx,]
model.ann.1 <- nnet(Consumption/152 ~ ., data = training.ann.1[, c(7:55,56)], size = 6, decay = 0.1, maxit = 1000, linout = TRUE)
predictions.ann.1 <- predict(model.ann.1,testing.ann.1)
predictions.ann.1 <- predictions.ann.1*152
checking.ann.1 <- cbind(testing.ann.1, predictions.ann.1)
checking.ann.1 <- checking.ann.1[,c(1:9,56,57)]
names(checking.ann.1)[11] <- "Forecast"
checking.ann.1 <- resultsevaluationANN(checking.ann.1)
ErrorsTable.ann.1 <- myerrorcalculationsBIS(checking.ann.1,"ann.1")
ErrorsTable.ann.1
Graphs.ann.1 <- graphmyresults(checking.ann.1, "ANN.1")
# DATES
Date1 <- "2015-01-01 00:00"
Date2 <- "2016-05-01 00:00"
Date3 <- "2017-06-01 00:00"
Date1comparison <- "2017-01-01 00:00"
Date2comparison <- "2017-06-01 00:00"
Datevalidation <- "2017-07-01 00:00"
# ANN MODEL 2
training.ann.2 <- anndataframe.dum %>% filter(Date >= Date1 & Date < Date2)
testing.ann.2 <- anndataframe.dum %>% filter(Date >= Date2 & Date < Date2comparison)
# inventedT <- round(runif(n = length(testing.ann.2$Temperature), min = -0.2, max = 0.2), digits = 2)
# testing.ann.2$Temperature <- testing.ann.2$Temperature * (1-inventedT)
model.ann.2 <- nnet(Consumption/152 ~ ., data = training.ann.2[, c(7:55,56)], size = 6, decay = 0.1, maxit = 1000, linout = TRUE)
predictions.ann.2 <- predict(model.ann.2,testing.ann.2)
predictions.ann.2 <- predictions.ann.2*152
checking.ann.2 <- cbind(testing.ann.2, predictions.ann.2)
checking.ann.2 <- checking.ann.2[,c(1:9,56,57)]
names(checking.ann.2)[11] <- "Forecast"
checking.ann.2 <- resultsevaluationANN(checking.ann.2)
ErrorsTable.ann.2 <- myerrorcalculationsBIS(checking.ann.2, "ann.2")
ErrorsTable.ann.2
rfGraphs.ann.2 <- graphmyresults(checking.ann.2, "ann.2")
Graphs.ann.2[8]
# ANN MODEL 3
training.ann.3 <- anndataframe.dum %>% filter(Date >= Date1 & Date < Date2)
testing.ann.3 <- anndataframe.dum %>% filter(Date >= Date1comparison & Date < Date2comparison)
model.ann.3 <- nnet(Consumption/152 ~ ., data = training.ann.3[, c(7:55,56)], size = 6, decay = 0.1, maxit = 1000, linout = TRUE)
predictions.ann.3 <- predict(model.ann.3,testing.ann.3)
predictions.ann.3 <- predictions.ann.3*152
checking.ann.3 <- cbind(testing.ann.3, predictions.ann.3)
checking.ann.3 <- checking.ann.3[,c(1:9,56,57)]
names(checking.ann.3)[11] <- "Forecast"
checking.ann.3 <- resultsevaluationANN(checking.ann.3)
ErrorsTable.ann.3 <- myerrorcalculationsBIS(checking.ann.3,"ann.3")
ErrorsTable.ann.3
Graphs.ann.3 <- graphmyresults(checking.ann.3, "ann.3")
# ANN MODEL 4
training.ann.4 <- anndataframe.dum %>% filter(Date >= Date1 & Date < Date1comparison)
testing.ann.4 <- anndataframe.dum %>% filter(Date >= Date1comparison & Date < Date2comparison)
model.ann.4 <- nnet(Consumption/152 ~ ., data = training.ann.4[, c(7:55,56)], size = 6, decay = 0.1, maxit = 1000, linout = TRUE)
predictions.ann.4 <- predict(model.ann.4,testing.ann.4)
predictions.ann.4 <- predictions.ann.4*152
checking.ann.4 <- cbind(testing.ann.4, predictions.ann.4)
checking.ann.4 <- checking.ann.4[,c(1:9,56,57)]
names(checking.ann.4)[11] <- "Forecast"
checking.ann.4 <- resultsevaluationANN(checking.ann.4)
ErrorsTable.ann.4 <- myerrorcalculationsBIS(checking.ann.4,"ann.4")
ErrorsTable.ann.4
Graphs.ann.4 <- graphmyresults(checking.ann.4, "ann.4")
# ANN MODEL 5
training.ann.5 <- anndataframe.dum %>% filter(Date >= Date1 & Date < Date2comparison)
testing.ann.5 <- anndataframe.dum %>% filter(Date >= Date2comparison & Date < Datevalidation)
model.ann.5 <- nnet(Consumption/152 ~ ., data = training.ann.5[, c(7:55,56)], size = 6, decay = 0.1, maxit = 1000, linout = TRUE)
predictions.ann.5 <- predict(model.ann.5,testing.ann.5)
predictions.ann.5 <- predictions.ann.5*152
checking.ann.5 <- cbind(testing.ann.5, predictions.ann.5)
checking.ann.5 <- checking.ann.5[,c(1:9,56,57)]
names(checking.ann.5)[11] <- "Forecast"
checking.ann.5 <- resultsevaluationANN(checking.ann.5)
ErrorsTable.ann.5 <- myerrorcalculationsBIS(checking.ann.5,"ann.5")
ErrorsTable.ann.5
Graphs.ann.5 <- graphmyresultsFIVE(checking.ann.5, "ann.5")
# PLOTS
source_url('https://gist.githubusercontent.com/fawda123/7471137/raw/c720af2cea5f312717f020a09946800d55b8f45b/nnet_plot_update.r')
plot(model.ann.1, max.sp = TRUE)