-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpython_RLS_RTMDNet.py
executable file
·587 lines (491 loc) · 27.4 KB
/
python_RLS_RTMDNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
# --------------------------------------------------------
# RLS_RTMDNet
# Licensed under The MIT License
# Written by Jin Gao (jin.gao at nlpr.ia.ac.cn)
# --------------------------------------------------------
#!/usr/bin/python
import vot
from vot import Rectangle
import os
from os.path import join, isdir
from tracker import *
import numpy as np
import argparse
import pickle
import math
import warnings
warnings.filterwarnings('ignore')
torch.cuda.set_device(1)
opts['model_path']='/home/jgao/vot-toolkit/tracker/examples/python/RLS_RTMDNet/models/rt-mdnet.pth'
opts['visual_log']=False
opts['visualize'] = False
opts['adaptive_align'] = True
opts['padding'] = 1.2
opts['jitter'] = True
def get_axis_aligned_bbox(region):
region = np.array([region[0][0][0], region[0][0][1], region[0][1][0], region[0][1][1],
region[0][2][0], region[0][2][1], region[0][3][0], region[0][3][1]])
cx = np.mean(region[0::2])
cy = np.mean(region[1::2])
x1 = min(region[0::2])
x2 = max(region[0::2])
y1 = min(region[1::2])
y2 = max(region[1::2])
A1 = np.linalg.norm(region[0:2] - region[2:4]) * np.linalg.norm(region[2:4] - region[4:6])
A2 = (x2 - x1) * (y2 - y1)
s = np.sqrt(A1 / A2)
w = s * (x2 - x1) + 1
h = s * (y2 - y1) + 1
return cx, cy, w, h
# start to track
handle = vot.VOT("polygon")
Polygon = handle.region()
cx, cy, w, h = get_axis_aligned_bbox(Polygon)
image_file = handle.frame()
if not image_file:
sys.exit(0)
else:
############################################
############################################
############################################
# Init bbox
target_bbox = np.array([cx-0.5*w, cy-0.5*h, w, h])
# Init model
model = MDNet(opts['model_path'])
if opts['adaptive_align']:
align_h = model.roi_align_model.aligned_height
align_w = model.roi_align_model.aligned_width
spatial_s = model.roi_align_model.spatial_scale
model.roi_align_model = RoIAlignAdaMax(align_h, align_w, spatial_s)
if opts['use_gpu']:
model = model.cuda()
model.set_learnable_params(opts['ft_layers'])
# Init image crop model
img_crop_model = imgCropper(1.)
if opts['use_gpu']:
img_crop_model.gpuEnable()
# Init criterion and optimizer
criterion = BinaryLoss()
init_optimizer = set_optimizer(model, 0.01)
update_optimizer = set_optimizer(model, opts['lr_update'])
update_optimizer_owm = set_optimizer(model, 0.01)
# Load first image
cur_image = Image.open(image_file).convert('RGB')
cur_image = np.asarray(cur_image)
# Draw pos/neg samples
ishape = cur_image.shape
pos_examples = gen_samples(SampleGenerator('gaussian', (ishape[1], ishape[0]), 0.1, 1.2),
target_bbox, opts['n_pos_init'], opts['overlap_pos_init'])
neg_examples = gen_samples(SampleGenerator('uniform', (ishape[1], ishape[0]), 1, 2, 1.1),
target_bbox, opts['n_neg_init'], opts['overlap_neg_init'])
neg_examples = np.random.permutation(neg_examples)
cur_bbreg_examples = gen_samples(SampleGenerator('uniform', (ishape[1], ishape[0]), 0.3, 1.5, 1.1),
target_bbox, opts['n_bbreg'], opts['overlap_bbreg'], opts['scale_bbreg'])
# compute padded sample
padded_x1 = (neg_examples[:, 0] - neg_examples[:, 2] * (opts['padding'] - 1.) / 2.).min()
padded_y1 = (neg_examples[:, 1] - neg_examples[:, 3] * (opts['padding'] - 1.) / 2.).min()
padded_x2 = (neg_examples[:, 0] + neg_examples[:, 2] * (opts['padding'] + 1.) / 2.).max()
padded_y2 = (neg_examples[:, 1] + neg_examples[:, 3] * (opts['padding'] + 1.) / 2.).max()
padded_scene_box = np.reshape(np.asarray((padded_x1, padded_y1, padded_x2 - padded_x1, padded_y2 - padded_y1)),
(1, 4))
scene_boxes = np.reshape(np.copy(padded_scene_box), (1, 4))
if opts['jitter']:
## horizontal shift
jittered_scene_box_horizon = np.copy(padded_scene_box)
jittered_scene_box_horizon[0, 0] -= 4.
jitter_scale_horizon = 1.
## vertical shift
jittered_scene_box_vertical = np.copy(padded_scene_box)
jittered_scene_box_vertical[0, 1] -= 4.
jitter_scale_vertical = 1.
jittered_scene_box_reduce1 = np.copy(padded_scene_box)
jitter_scale_reduce1 = 1.1 ** (-1)
## vertical shift
jittered_scene_box_enlarge1 = np.copy(padded_scene_box)
jitter_scale_enlarge1 = 1.1 ** (1)
## scale reduction
jittered_scene_box_reduce2 = np.copy(padded_scene_box)
jitter_scale_reduce2 = 1.1 ** (-2)
## scale enlarge
jittered_scene_box_enlarge2 = np.copy(padded_scene_box)
jitter_scale_enlarge2 = 1.1 ** (2)
scene_boxes = np.concatenate(
[scene_boxes, jittered_scene_box_horizon, jittered_scene_box_vertical, jittered_scene_box_reduce1,
jittered_scene_box_enlarge1, jittered_scene_box_reduce2, jittered_scene_box_enlarge2], axis=0)
jitter_scale = [1., jitter_scale_horizon, jitter_scale_vertical, jitter_scale_reduce1, jitter_scale_enlarge1,
jitter_scale_reduce2, jitter_scale_enlarge2]
else:
jitter_scale = [1.]
model.eval()
for bidx in range(0, scene_boxes.shape[0]):
crop_img_size = (scene_boxes[bidx, 2:4] * ((opts['img_size'], opts['img_size']) / target_bbox[2:4])).astype(
'int64') * jitter_scale[bidx]
cropped_image, cur_image_var = img_crop_model.crop_image(cur_image, np.reshape(scene_boxes[bidx], (1, 4)),
crop_img_size)
cropped_image = cropped_image - 128.
feat_map = model(cropped_image, out_layer='conv3')
rel_target_bbox = np.copy(target_bbox)
rel_target_bbox[0:2] -= scene_boxes[bidx, 0:2]
batch_num = np.zeros((pos_examples.shape[0], 1))
cur_pos_rois = np.copy(pos_examples)
cur_pos_rois[:, 0:2] -= np.repeat(np.reshape(scene_boxes[bidx, 0:2], (1, 2)), cur_pos_rois.shape[0], axis=0)
scaled_obj_size = float(opts['img_size']) * jitter_scale[bidx]
cur_pos_rois = samples2maskroi(cur_pos_rois, model.receptive_field, (scaled_obj_size, scaled_obj_size),
target_bbox[2:4], opts['padding'])
cur_pos_rois = np.concatenate((batch_num, cur_pos_rois), axis=1)
cur_pos_rois = Variable(torch.from_numpy(cur_pos_rois.astype('float32'))).cuda()
cur_pos_feats = model.roi_align_model(feat_map, cur_pos_rois)
cur_pos_feats = cur_pos_feats.view(cur_pos_feats.size(0), -1).data.clone()
batch_num = np.zeros((neg_examples.shape[0], 1))
cur_neg_rois = np.copy(neg_examples)
cur_neg_rois[:, 0:2] -= np.repeat(np.reshape(scene_boxes[bidx, 0:2], (1, 2)), cur_neg_rois.shape[0], axis=0)
cur_neg_rois = samples2maskroi(cur_neg_rois, model.receptive_field, (scaled_obj_size, scaled_obj_size),
target_bbox[2:4], opts['padding'])
cur_neg_rois = np.concatenate((batch_num, cur_neg_rois), axis=1)
cur_neg_rois = Variable(torch.from_numpy(cur_neg_rois.astype('float32'))).cuda()
cur_neg_feats = model.roi_align_model(feat_map, cur_neg_rois)
cur_neg_feats = cur_neg_feats.view(cur_neg_feats.size(0), -1).data.clone()
## bbreg rois
batch_num = np.zeros((cur_bbreg_examples.shape[0], 1))
cur_bbreg_rois = np.copy(cur_bbreg_examples)
cur_bbreg_rois[:, 0:2] -= np.repeat(np.reshape(scene_boxes[bidx, 0:2], (1, 2)), cur_bbreg_rois.shape[0], axis=0)
scaled_obj_size = float(opts['img_size']) * jitter_scale[bidx]
cur_bbreg_rois = samples2maskroi(cur_bbreg_rois, model.receptive_field, (scaled_obj_size, scaled_obj_size),
target_bbox[2:4], opts['padding'])
cur_bbreg_rois = np.concatenate((batch_num, cur_bbreg_rois), axis=1)
cur_bbreg_rois = Variable(torch.from_numpy(cur_bbreg_rois.astype('float32'))).cuda()
cur_bbreg_feats = model.roi_align_model(feat_map, cur_bbreg_rois)
cur_bbreg_feats = cur_bbreg_feats.view(cur_bbreg_feats.size(0), -1).data.clone()
feat_dim = cur_pos_feats.size(-1)
if bidx == 0:
pos_feats = cur_pos_feats
neg_feats = cur_neg_feats
##bbreg feature
bbreg_feats = cur_bbreg_feats
bbreg_examples = cur_bbreg_examples
else:
pos_feats = torch.cat((pos_feats, cur_pos_feats), dim=0)
neg_feats = torch.cat((neg_feats, cur_neg_feats), dim=0)
##bbreg feature
bbreg_feats = torch.cat((bbreg_feats, cur_bbreg_feats), dim=0)
bbreg_examples = np.concatenate((bbreg_examples, cur_bbreg_examples), axis=0)
if pos_feats.size(0) > opts['n_pos_init']:
pos_idx = np.asarray(range(pos_feats.size(0)))
np.random.shuffle(pos_idx)
pos_feats = pos_feats[pos_idx[0:opts['n_pos_init']], :]
if neg_feats.size(0) > opts['n_neg_init']:
neg_idx = np.asarray(range(neg_feats.size(0)))
np.random.shuffle(neg_idx)
neg_feats = neg_feats[neg_idx[0:opts['n_neg_init']], :]
##bbreg
if bbreg_feats.size(0) > opts['n_bbreg']:
bbreg_idx = np.asarray(range(bbreg_feats.size(0)))
np.random.shuffle(bbreg_idx)
bbreg_feats = bbreg_feats[bbreg_idx[0:opts['n_bbreg']], :]
bbreg_examples = bbreg_examples[bbreg_idx[0:opts['n_bbreg']], :]
# print bbreg_examples.shape
## open images and crop patch from obj
extra_obj_size = np.array((opts['img_size'], opts['img_size']))
extra_crop_img_size = extra_obj_size * (opts['padding'] + 0.6)
replicateNum = 100
for iidx in range(replicateNum):
extra_target_bbox = np.copy(target_bbox)
extra_scene_box = np.copy(extra_target_bbox)
extra_scene_box_center = extra_scene_box[0:2] + extra_scene_box[2:4] / 2.
extra_scene_box_size = extra_scene_box[2:4] * (opts['padding'] + 0.6)
extra_scene_box[0:2] = extra_scene_box_center - extra_scene_box_size / 2.
extra_scene_box[2:4] = extra_scene_box_size
extra_shift_offset = np.clip(2. * np.random.randn(2), -4, 4)
cur_extra_scale = 1.1 ** np.clip(np.random.randn(1), -2, 2)
extra_scene_box[0] += extra_shift_offset[0]
extra_scene_box[1] += extra_shift_offset[1]
extra_scene_box[2:4] *= cur_extra_scale[0]
scaled_obj_size = float(opts['img_size']) / cur_extra_scale[0]
cur_extra_cropped_image, _ = img_crop_model.crop_image(cur_image, np.reshape(extra_scene_box, (1, 4)),
extra_crop_img_size)
cur_extra_cropped_image = cur_extra_cropped_image.detach()
cur_extra_pos_examples = gen_samples(SampleGenerator('gaussian', (ishape[1], ishape[0]), 0.1, 1.2),
extra_target_bbox, opts['n_pos_init'] / replicateNum,
opts['overlap_pos_init'])
cur_extra_neg_examples = gen_samples(SampleGenerator('uniform', (ishape[1], ishape[0]), 0.3, 2, 1.1),
extra_target_bbox, opts['n_neg_init'] / replicateNum / 4,
opts['overlap_neg_init'])
##bbreg sample
cur_extra_bbreg_examples = gen_samples(SampleGenerator('uniform', (ishape[1], ishape[0]), 0.3, 1.5, 1.1),
extra_target_bbox, opts['n_bbreg'] / replicateNum / 4,
opts['overlap_bbreg'], opts['scale_bbreg'])
batch_num = iidx * np.ones((cur_extra_pos_examples.shape[0], 1))
cur_extra_pos_rois = np.copy(cur_extra_pos_examples)
cur_extra_pos_rois[:, 0:2] -= np.repeat(np.reshape(extra_scene_box[0:2], (1, 2)),
cur_extra_pos_rois.shape[0], axis=0)
cur_extra_pos_rois = samples2maskroi(cur_extra_pos_rois, model.receptive_field,
(scaled_obj_size, scaled_obj_size), extra_target_bbox[2:4],
opts['padding'])
cur_extra_pos_rois = np.concatenate((batch_num, cur_extra_pos_rois), axis=1)
batch_num = iidx * np.ones((cur_extra_neg_examples.shape[0], 1))
cur_extra_neg_rois = np.copy(cur_extra_neg_examples)
cur_extra_neg_rois[:, 0:2] -= np.repeat(np.reshape(extra_scene_box[0:2], (1, 2)), cur_extra_neg_rois.shape[0],
axis=0)
cur_extra_neg_rois = samples2maskroi(cur_extra_neg_rois, model.receptive_field,
(scaled_obj_size, scaled_obj_size), extra_target_bbox[2:4],
opts['padding'])
cur_extra_neg_rois = np.concatenate((batch_num, cur_extra_neg_rois), axis=1)
## bbreg rois
batch_num = iidx * np.ones((cur_extra_bbreg_examples.shape[0], 1))
cur_extra_bbreg_rois = np.copy(cur_extra_bbreg_examples)
cur_extra_bbreg_rois[:, 0:2] -= np.repeat(np.reshape(extra_scene_box[0:2], (1, 2)),
cur_extra_bbreg_rois.shape[0], axis=0)
cur_extra_bbreg_rois = samples2maskroi(cur_extra_bbreg_rois, model.receptive_field,
(scaled_obj_size, scaled_obj_size), extra_target_bbox[2:4],
opts['padding'])
cur_extra_bbreg_rois = np.concatenate((batch_num, cur_extra_bbreg_rois), axis=1)
if iidx == 0:
extra_cropped_image = cur_extra_cropped_image
extra_pos_rois = np.copy(cur_extra_pos_rois)
extra_neg_rois = np.copy(cur_extra_neg_rois)
##bbreg rois
extra_bbreg_rois = np.copy(cur_extra_bbreg_rois)
extra_bbreg_examples = np.copy(cur_extra_bbreg_examples)
else:
extra_cropped_image = torch.cat((extra_cropped_image, cur_extra_cropped_image), dim=0)
extra_pos_rois = np.concatenate((extra_pos_rois, np.copy(cur_extra_pos_rois)), axis=0)
extra_neg_rois = np.concatenate((extra_neg_rois, np.copy(cur_extra_neg_rois)), axis=0)
##bbreg rois
extra_bbreg_rois = np.concatenate((extra_bbreg_rois, np.copy(cur_extra_bbreg_rois)), axis=0)
extra_bbreg_examples = np.concatenate((extra_bbreg_examples, np.copy(cur_extra_bbreg_examples)), axis=0)
extra_pos_rois = Variable(torch.from_numpy(extra_pos_rois.astype('float32'))).cuda()
extra_neg_rois = Variable(torch.from_numpy(extra_neg_rois.astype('float32'))).cuda()
##bbreg rois
extra_bbreg_rois = Variable(torch.from_numpy(extra_bbreg_rois.astype('float32'))).cuda()
extra_cropped_image -= 128.
extra_feat_maps = model(extra_cropped_image, out_layer='conv3')
# Draw pos/neg samples
ishape = cur_image.shape
extra_pos_feats = model.roi_align_model(extra_feat_maps, extra_pos_rois)
extra_pos_feats = extra_pos_feats.view(extra_pos_feats.size(0), -1).data.clone()
extra_neg_feats = model.roi_align_model(extra_feat_maps, extra_neg_rois)
extra_neg_feats = extra_neg_feats.view(extra_neg_feats.size(0), -1).data.clone()
##bbreg feat
extra_bbreg_feats = model.roi_align_model(extra_feat_maps, extra_bbreg_rois)
extra_bbreg_feats = extra_bbreg_feats.view(extra_bbreg_feats.size(0), -1).data.clone()
## concatenate extra features to original_features
pos_feats = torch.cat((pos_feats, extra_pos_feats), dim=0)
neg_feats = torch.cat((neg_feats, extra_neg_feats), dim=0)
## concatenate extra bbreg feats to original_bbreg_feats
bbreg_feats = torch.cat((bbreg_feats, extra_bbreg_feats), dim=0)
bbreg_examples = np.concatenate((bbreg_examples, extra_bbreg_examples), axis=0)
torch.cuda.empty_cache()
model.zero_grad()
P4 = torch.autograd.Variable(torch.eye(512 * 3 * 3 + 1).type(dtype), volatile=True)
P5 = torch.autograd.Variable(torch.eye(512 + 1).type(dtype), volatile=True) * 10.0
P6 = torch.autograd.Variable(torch.eye(512 + 1).type(dtype), volatile=True) * 10.0
W4 = torch.autograd.Variable(torch.zeros(512 * 3 * 3 + 1, 512).type(dtype), volatile=True)
W5 = torch.autograd.Variable(torch.zeros(512 + 1, 512).type(dtype), volatile=True)
W6 = torch.autograd.Variable(torch.zeros(512 + 1, 2).type(dtype), volatile=True)
flag_old = 0
# Initial training
flag_old = train_owm(model, criterion, init_optimizer, pos_feats, neg_feats, opts['maxiter_init'], P4, P5, P6, W4,
W5, W6, flag_old)
##bbreg train
if bbreg_feats.size(0) > opts['n_bbreg']:
bbreg_idx = np.asarray(range(bbreg_feats.size(0)))
np.random.shuffle(bbreg_idx)
bbreg_feats = bbreg_feats[bbreg_idx[0:opts['n_bbreg']], :]
bbreg_examples = bbreg_examples[bbreg_idx[0:opts['n_bbreg']], :]
bbreg = BBRegressor((ishape[1], ishape[0]))
bbreg.train(bbreg_feats, bbreg_examples, target_bbox)
if pos_feats.size(0) > opts['n_pos_update']:
pos_idx = np.asarray(range(pos_feats.size(0)))
np.random.shuffle(pos_idx)
pos_feats_all = [pos_feats.index_select(0, torch.from_numpy(pos_idx[0:opts['n_pos_update']]).cuda())]
if neg_feats.size(0) > opts['n_neg_update']:
neg_idx = np.asarray(range(neg_feats.size(0)))
np.random.shuffle(neg_idx)
neg_feats_all = [neg_feats.index_select(0, torch.from_numpy(neg_idx[0:opts['n_neg_update']]).cuda())]
# Display
savefig_dir = ''
display = opts['visualize']
savefig = savefig_dir != ''
if display or savefig:
dpi = 80.0
figsize = (cur_image.shape[1] / dpi, cur_image.shape[0] / dpi)
fig = plt.figure(frameon=False, figsize=figsize, dpi=dpi)
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
fig.add_axes(ax)
im = ax.imshow(cur_image, aspect=1)
if gt is not None:
gt_rect = plt.Rectangle(tuple(gt[0, :2]), gt[0, 2], gt[0, 3],
linewidth=3, edgecolor="#00ff00", zorder=1, fill=False)
ax.add_patch(gt_rect)
rect = plt.Rectangle(tuple(result_bb[0, :2]), result_bb[0, 2], result_bb[0, 3],
linewidth=3, edgecolor="#ff0000", zorder=1, fill=False)
ax.add_patch(rect)
if display:
plt.pause(.01)
plt.draw()
if savefig:
fig.savefig(os.path.join(savefig_dir, '0000.jpg'), dpi=dpi)
# Main loop
trans_f = opts['trans_f']
i = 0
while True:
i = i + 1
image_file = handle.frame()
if not image_file:
break
cur_image = Image.open(image_file).convert('RGB')
cur_image = np.asarray(cur_image)
# Estimate target bbox
ishape = cur_image.shape
samples = gen_samples(SampleGenerator('gaussian', (ishape[1], ishape[0]), trans_f, opts['scale_f'], valid=True),
target_bbox, opts['n_samples'])
padded_x1 = (samples[:, 0] - samples[:, 2] * (opts['padding'] - 1.) / 2.).min()
padded_y1 = (samples[:, 1] - samples[:, 3] * (opts['padding'] - 1.) / 2.).min()
padded_x2 = (samples[:, 0] + samples[:, 2] * (opts['padding'] + 1.) / 2.).max()
padded_y2 = (samples[:, 1] + samples[:, 3] * (opts['padding'] + 1.) / 2.).max()
padded_scene_box = np.asarray((padded_x1, padded_y1, padded_x2 - padded_x1, padded_y2 - padded_y1))
if padded_scene_box[0] > cur_image.shape[1]:
padded_scene_box[0] = cur_image.shape[1] - 1
if padded_scene_box[1] > cur_image.shape[0]:
padded_scene_box[1] = cur_image.shape[0] - 1
if padded_scene_box[0] + padded_scene_box[2] < 0:
padded_scene_box[2] = -padded_scene_box[0] + 1
if padded_scene_box[1] + padded_scene_box[3] < 0:
padded_scene_box[3] = -padded_scene_box[1] + 1
crop_img_size = (padded_scene_box[2:4] * ((opts['img_size'], opts['img_size']) / target_bbox[2:4])).astype(
'int64')
cropped_image, cur_image_var = img_crop_model.crop_image(cur_image, np.reshape(padded_scene_box, (1, 4)),
crop_img_size)
cropped_image = cropped_image - 128.
model.eval()
feat_map = model(cropped_image, out_layer='conv3')
# relative target bbox with padded_scene_box
rel_target_bbox = np.copy(target_bbox)
rel_target_bbox[0:2] -= padded_scene_box[0:2]
# Extract sample features and get target location
batch_num = np.zeros((samples.shape[0], 1))
sample_rois = np.copy(samples)
sample_rois[:, 0:2] -= np.repeat(np.reshape(padded_scene_box[0:2], (1, 2)), sample_rois.shape[0], axis=0)
sample_rois = samples2maskroi(sample_rois, model.receptive_field, (opts['img_size'], opts['img_size']),
target_bbox[2:4], opts['padding'])
sample_rois = np.concatenate((batch_num, sample_rois), axis=1)
sample_rois = Variable(torch.from_numpy(sample_rois.astype('float32'))).cuda()
sample_feats = model.roi_align_model(feat_map, sample_rois)
sample_feats = sample_feats.view(sample_feats.size(0), -1).clone()
sample_scores = model(sample_feats, in_layer='fc4')
top_scores, top_idx = sample_scores[:, 1].topk(5)
top_idx = top_idx.data.cpu().numpy()
target_score = top_scores.data.mean()
target_bbox = samples[top_idx].mean(axis=0)
success = target_score > opts['success_thr']
# # Expand search area at failure
if success:
trans_f = opts['trans_f']
else:
trans_f = opts['trans_f_expand']
## Bbox regression
if success:
bbreg_feats = sample_feats[top_idx, :]
bbreg_samples = samples[top_idx]
bbreg_samples = bbreg.predict(bbreg_feats.data, bbreg_samples)
bbreg_bbox = bbreg_samples.mean(axis=0)
else:
bbreg_bbox = target_bbox
# Data collect
if success:
# Draw pos/neg samples
pos_examples = gen_samples(
SampleGenerator('gaussian', (ishape[1], ishape[0]), 0.1, 1.2), target_bbox,
opts['n_pos_update'],
opts['overlap_pos_update'])
neg_examples = gen_samples(
SampleGenerator('uniform', (ishape[1], ishape[0]), 1.5, 1.2), target_bbox,
opts['n_neg_update'],
opts['overlap_neg_update'])
padded_x1 = (neg_examples[:, 0] - neg_examples[:, 2] * (opts['padding'] - 1.) / 2.).min()
padded_y1 = (neg_examples[:, 1] - neg_examples[:, 3] * (opts['padding'] - 1.) / 2.).min()
padded_x2 = (neg_examples[:, 0] + neg_examples[:, 2] * (opts['padding'] + 1.) / 2.).max()
padded_y2 = (neg_examples[:, 1] + neg_examples[:, 3] * (opts['padding'] + 1.) / 2.).max()
padded_scene_box = np.reshape(np.asarray((padded_x1, padded_y1, padded_x2 - padded_x1, padded_y2 - padded_y1)),
(1, 4))
scene_boxes = np.reshape(np.copy(padded_scene_box), (1, 4))
jitter_scale = [1.]
for bidx in range(0, scene_boxes.shape[0]):
crop_img_size = (scene_boxes[bidx, 2:4] * ((opts['img_size'], opts['img_size']) / target_bbox[2:4])).astype(
'int64') * jitter_scale[bidx]
cropped_image, cur_image_var = img_crop_model.crop_image(cur_image, np.reshape(scene_boxes[bidx], (1, 4)),
crop_img_size)
cropped_image = cropped_image - 128.
feat_map = model(cropped_image, out_layer='conv3')
rel_target_bbox = np.copy(target_bbox)
rel_target_bbox[0:2] -= scene_boxes[bidx, 0:2]
batch_num = np.zeros((pos_examples.shape[0], 1))
cur_pos_rois = np.copy(pos_examples)
cur_pos_rois[:, 0:2] -= np.repeat(np.reshape(scene_boxes[bidx, 0:2], (1, 2)), cur_pos_rois.shape[0], axis=0)
scaled_obj_size = float(opts['img_size']) * jitter_scale[bidx]
cur_pos_rois = samples2maskroi(cur_pos_rois, model.receptive_field, (scaled_obj_size, scaled_obj_size),
target_bbox[2:4], opts['padding'])
cur_pos_rois = np.concatenate((batch_num, cur_pos_rois), axis=1)
cur_pos_rois = Variable(torch.from_numpy(cur_pos_rois.astype('float32'))).cuda()
cur_pos_feats = model.roi_align_model(feat_map, cur_pos_rois)
cur_pos_feats = cur_pos_feats.view(cur_pos_feats.size(0), -1).data.clone()
batch_num = np.zeros((neg_examples.shape[0], 1))
cur_neg_rois = np.copy(neg_examples)
cur_neg_rois[:, 0:2] -= np.repeat(np.reshape(scene_boxes[bidx, 0:2], (1, 2)), cur_neg_rois.shape[0],
axis=0)
cur_neg_rois = samples2maskroi(cur_neg_rois, model.receptive_field, (scaled_obj_size, scaled_obj_size),
target_bbox[2:4], opts['padding'])
cur_neg_rois = np.concatenate((batch_num, cur_neg_rois), axis=1)
cur_neg_rois = Variable(torch.from_numpy(cur_neg_rois.astype('float32'))).cuda()
cur_neg_feats = model.roi_align_model(feat_map, cur_neg_rois)
cur_neg_feats = cur_neg_feats.view(cur_neg_feats.size(0), -1).data.clone()
feat_dim = cur_pos_feats.size(-1)
if bidx == 0:
pos_feats = cur_pos_feats ##index select
neg_feats = cur_neg_feats
else:
pos_feats = torch.cat((pos_feats, cur_pos_feats), dim=0)
neg_feats = torch.cat((neg_feats, cur_neg_feats), dim=0)
if pos_feats.size(0) > opts['n_pos_update']:
pos_idx = np.asarray(range(pos_feats.size(0)))
np.random.shuffle(pos_idx)
pos_feats = pos_feats.index_select(0, torch.from_numpy(pos_idx[0:opts['n_pos_update']]).cuda())
if neg_feats.size(0) > opts['n_neg_update']:
neg_idx = np.asarray(range(neg_feats.size(0)))
np.random.shuffle(neg_idx)
neg_feats = neg_feats.index_select(0, torch.from_numpy(neg_idx[0:opts['n_neg_update']]).cuda())
pos_feats_all.append(pos_feats)
neg_feats_all.append(neg_feats)
if len(pos_feats_all) > opts['n_frames_long']:
del pos_feats_all[0]
if len(neg_feats_all) > opts['n_frames_short']:
del neg_feats_all[0]
# Short term update
if not success:
nframes = min(opts['n_frames_short'], len(pos_feats_all))
pos_data = torch.stack(pos_feats_all[-nframes:], 0).view(-1, feat_dim)
neg_data = torch.stack(neg_feats_all, 0).view(-1, feat_dim)
flag_old = train(model, criterion, update_optimizer, pos_data, neg_data, opts['maxiter_update'], W4, W5, W6,
flag_old)
# Long term update
elif i % opts['long_interval'] == 0:
nframes = min(opts['n_frames_short'], len(pos_feats_all))
pos_data = torch.stack(pos_feats_all[-nframes:], 0).view(-1, feat_dim)
# pos_data = torch.stack(pos_feats_all,0).view(-1,feat_dim)
neg_data = torch.stack(neg_feats_all, 0).view(-1, feat_dim)
flag_old = train_owm(model, criterion, update_optimizer_owm, pos_data, neg_data, opts['maxiter_update'], P4, P5,
P6, W4, W5, W6, flag_old)
# Display
if display or savefig:
im.set_data(cur_image)
rect.set_xy(result_bb[i, :2])
rect.set_width(result_bb[i, 2])
rect.set_height(result_bb[i, 3])
if display:
plt.pause(.01)
plt.draw()
if savefig:
fig.savefig(os.path.join(savefig_dir, '%04d.jpg' % (i)), dpi=dpi)
res = bbreg_bbox
handle.report(Rectangle(res[0], res[1], res[2], res[3]))