forked from javedsha/text-classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathText+Classification+using+python,+scikit+and+nltk.py
166 lines (97 loc) · 4.77 KB
/
Text+Classification+using+python,+scikit+and+nltk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# coding: utf-8
# In[1]:
#Loading the data set - training data.
from sklearn.datasets import fetch_20newsgroups
twenty_train = fetch_20newsgroups(subset='train', shuffle=True)
# In[4]:
# You can check the target names (categories) and some data files by following commands.
twenty_train.target_names #prints all the categories
# In[5]:
print("\n".join(twenty_train.data[0].split("\n")[:3])) #prints first line of the first data file
# In[6]:
# Extracting features from text files
from sklearn.feature_extraction.text import CountVectorizer
count_vect = CountVectorizer()
X_train_counts = count_vect.fit_transform(twenty_train.data)
X_train_counts.shape
# In[7]:
# TF-IDF
from sklearn.feature_extraction.text import TfidfTransformer
tfidf_transformer = TfidfTransformer()
X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)
X_train_tfidf.shape
# In[9]:
# Machine Learning
# Training Naive Bayes (NB) classifier on training data.
from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB().fit(X_train_tfidf, twenty_train.target)
# In[14]:
# Building a pipeline: We can write less code and do all of the above, by building a pipeline as follows:
# The names ‘vect’ , ‘tfidf’ and ‘clf’ are arbitrary but will be used later.
# We will be using the 'text_clf' going forward.
from sklearn.pipeline import Pipeline
text_clf = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', MultinomialNB())])
text_clf = text_clf.fit(twenty_train.data, twenty_train.target)
# In[15]:
# Performance of NB Classifier
import numpy as np
twenty_test = fetch_20newsgroups(subset='test', shuffle=True)
predicted = text_clf.predict(twenty_test.data)
np.mean(predicted == twenty_test.target)
# In[16]:
# Training Support Vector Machines - SVM and calculating its performance
from sklearn.linear_model import SGDClassifier
text_clf_svm = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTransformer()),
('clf-svm', SGDClassifier(loss='hinge', penalty='l2',alpha=1e-3, n_iter=5, random_state=42))])
text_clf_svm = text_clf_svm.fit(twenty_train.data, twenty_train.target)
predicted_svm = text_clf_svm.predict(twenty_test.data)
np.mean(predicted_svm == twenty_test.target)
# In[18]:
# Grid Search
# Here, we are creating a list of parameters for which we would like to do performance tuning.
# All the parameters name start with the classifier name (remember the arbitrary name we gave).
# E.g. vect__ngram_range; here we are telling to use unigram and bigrams and choose the one which is optimal.
from sklearn.model_selection import GridSearchCV
parameters = {'vect__ngram_range': [(1, 1), (1, 2)], 'tfidf__use_idf': (True, False), 'clf__alpha': (1e-2, 1e-3)}
# In[19]:
# Next, we create an instance of the grid search by passing the classifier, parameters
# and n_jobs=-1 which tells to use multiple cores from user machine.
gs_clf = GridSearchCV(text_clf, parameters, n_jobs=-1)
gs_clf = gs_clf.fit(twenty_train.data, twenty_train.target)
# In[23]:
# To see the best mean score and the params, run the following code
gs_clf.best_score_
gs_clf.best_params_
# Output for above should be: The accuracy has now increased to ~90.6% for the NB classifier (not so naive anymore! 😄)
# and the corresponding parameters are {‘clf__alpha’: 0.01, ‘tfidf__use_idf’: True, ‘vect__ngram_range’: (1, 2)}.
# In[24]:
# Similarly doing grid search for SVM
from sklearn.model_selection import GridSearchCV
parameters_svm = {'vect__ngram_range': [(1, 1), (1, 2)], 'tfidf__use_idf': (True, False),'clf-svm__alpha': (1e-2, 1e-3)}
gs_clf_svm = GridSearchCV(text_clf_svm, parameters_svm, n_jobs=-1)
gs_clf_svm = gs_clf_svm.fit(twenty_train.data, twenty_train.target)
gs_clf_svm.best_score_
gs_clf_svm.best_params_
# In[25]:
# NLTK
# Removing stop words
from sklearn.pipeline import Pipeline
text_clf = Pipeline([('vect', CountVectorizer(stop_words='english')), ('tfidf', TfidfTransformer()),
('clf', MultinomialNB())])
# In[26]:
# Stemming Code
import nltk
nltk.download()
from nltk.stem.snowball import SnowballStemmer
stemmer = SnowballStemmer("english", ignore_stopwords=True)
class StemmedCountVectorizer(CountVectorizer):
def build_analyzer(self):
analyzer = super(StemmedCountVectorizer, self).build_analyzer()
return lambda doc: ([stemmer.stem(w) for w in analyzer(doc)])
stemmed_count_vect = StemmedCountVectorizer(stop_words='english')
text_mnb_stemmed = Pipeline([('vect', stemmed_count_vect), ('tfidf', TfidfTransformer()),
('mnb', MultinomialNB(fit_prior=False))])
text_mnb_stemmed = text_mnb_stemmed.fit(twenty_train.data, twenty_train.target)
predicted_mnb_stemmed = text_mnb_stemmed.predict(twenty_test.data)
np.mean(predicted_mnb_stemmed == twenty_test.target)
# In[ ]: