-
Notifications
You must be signed in to change notification settings - Fork 3.6k
/
Copy pathEllipsoidRhumbLine.js
745 lines (677 loc) · 21.1 KB
/
EllipsoidRhumbLine.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
import Cartesian3 from "./Cartesian3.js";
import Cartographic from "./Cartographic.js";
import Check from "./Check.js";
import defaultValue from "./defaultValue.js";
import defined from "./defined.js";
import DeveloperError from "./DeveloperError.js";
import Ellipsoid from "./Ellipsoid.js";
import CesiumMath from "./Math.js";
function calculateM(ellipticity, major, latitude) {
if (ellipticity === 0.0) {
// sphere
return major * latitude;
}
const e2 = ellipticity * ellipticity;
const e4 = e2 * e2;
const e6 = e4 * e2;
const e8 = e6 * e2;
const e10 = e8 * e2;
const e12 = e10 * e2;
const phi = latitude;
const sin2Phi = Math.sin(2 * phi);
const sin4Phi = Math.sin(4 * phi);
const sin6Phi = Math.sin(6 * phi);
const sin8Phi = Math.sin(8 * phi);
const sin10Phi = Math.sin(10 * phi);
const sin12Phi = Math.sin(12 * phi);
return (
major *
((1 -
e2 / 4 -
(3 * e4) / 64 -
(5 * e6) / 256 -
(175 * e8) / 16384 -
(441 * e10) / 65536 -
(4851 * e12) / 1048576) *
phi -
((3 * e2) / 8 +
(3 * e4) / 32 +
(45 * e6) / 1024 +
(105 * e8) / 4096 +
(2205 * e10) / 131072 +
(6237 * e12) / 524288) *
sin2Phi +
((15 * e4) / 256 +
(45 * e6) / 1024 +
(525 * e8) / 16384 +
(1575 * e10) / 65536 +
(155925 * e12) / 8388608) *
sin4Phi -
((35 * e6) / 3072 +
(175 * e8) / 12288 +
(3675 * e10) / 262144 +
(13475 * e12) / 1048576) *
sin6Phi +
((315 * e8) / 131072 + (2205 * e10) / 524288 + (43659 * e12) / 8388608) *
sin8Phi -
((693 * e10) / 1310720 + (6237 * e12) / 5242880) * sin10Phi +
((1001 * e12) / 8388608) * sin12Phi)
);
}
function calculateInverseM(M, ellipticity, major) {
const d = M / major;
if (ellipticity === 0.0) {
// sphere
return d;
}
const d2 = d * d;
const d3 = d2 * d;
const d4 = d3 * d;
const e = ellipticity;
const e2 = e * e;
const e4 = e2 * e2;
const e6 = e4 * e2;
const e8 = e6 * e2;
const e10 = e8 * e2;
const e12 = e10 * e2;
const sin2D = Math.sin(2 * d);
const cos2D = Math.cos(2 * d);
const sin4D = Math.sin(4 * d);
const cos4D = Math.cos(4 * d);
const sin6D = Math.sin(6 * d);
const cos6D = Math.cos(6 * d);
const sin8D = Math.sin(8 * d);
const cos8D = Math.cos(8 * d);
const sin10D = Math.sin(10 * d);
const cos10D = Math.cos(10 * d);
const sin12D = Math.sin(12 * d);
return (
d +
(d * e2) / 4 +
(7 * d * e4) / 64 +
(15 * d * e6) / 256 +
(579 * d * e8) / 16384 +
(1515 * d * e10) / 65536 +
(16837 * d * e12) / 1048576 +
((3 * d * e4) / 16 +
(45 * d * e6) / 256 -
(d * (32 * d2 - 561) * e8) / 4096 -
(d * (232 * d2 - 1677) * e10) / 16384 +
(d * (399985 - 90560 * d2 + 512 * d4) * e12) / 5242880) *
cos2D +
((21 * d * e6) / 256 +
(483 * d * e8) / 4096 -
(d * (224 * d2 - 1969) * e10) / 16384 -
(d * (33152 * d2 - 112599) * e12) / 1048576) *
cos4D +
((151 * d * e8) / 4096 +
(4681 * d * e10) / 65536 +
(1479 * d * e12) / 16384 -
(453 * d3 * e12) / 32768) *
cos6D +
((1097 * d * e10) / 65536 + (42783 * d * e12) / 1048576) * cos8D +
((8011 * d * e12) / 1048576) * cos10D +
((3 * e2) / 8 +
(3 * e4) / 16 +
(213 * e6) / 2048 -
(3 * d2 * e6) / 64 +
(255 * e8) / 4096 -
(33 * d2 * e8) / 512 +
(20861 * e10) / 524288 -
(33 * d2 * e10) / 512 +
(d4 * e10) / 1024 +
(28273 * e12) / 1048576 -
(471 * d2 * e12) / 8192 +
(9 * d4 * e12) / 4096) *
sin2D +
((21 * e4) / 256 +
(21 * e6) / 256 +
(533 * e8) / 8192 -
(21 * d2 * e8) / 512 +
(197 * e10) / 4096 -
(315 * d2 * e10) / 4096 +
(584039 * e12) / 16777216 -
(12517 * d2 * e12) / 131072 +
(7 * d4 * e12) / 2048) *
sin4D +
((151 * e6) / 6144 +
(151 * e8) / 4096 +
(5019 * e10) / 131072 -
(453 * d2 * e10) / 16384 +
(26965 * e12) / 786432 -
(8607 * d2 * e12) / 131072) *
sin6D +
((1097 * e8) / 131072 +
(1097 * e10) / 65536 +
(225797 * e12) / 10485760 -
(1097 * d2 * e12) / 65536) *
sin8D +
((8011 * e10) / 2621440 + (8011 * e12) / 1048576) * sin10D +
((293393 * e12) / 251658240) * sin12D
);
}
function calculateSigma(ellipticity, latitude) {
if (ellipticity === 0.0) {
// sphere
return Math.log(Math.tan(0.5 * (CesiumMath.PI_OVER_TWO + latitude)));
}
const eSinL = ellipticity * Math.sin(latitude);
return (
Math.log(Math.tan(0.5 * (CesiumMath.PI_OVER_TWO + latitude))) -
(ellipticity / 2.0) * Math.log((1 + eSinL) / (1 - eSinL))
);
}
function calculateHeading(
ellipsoidRhumbLine,
firstLongitude,
firstLatitude,
secondLongitude,
secondLatitude
) {
const sigma1 = calculateSigma(ellipsoidRhumbLine._ellipticity, firstLatitude);
const sigma2 = calculateSigma(
ellipsoidRhumbLine._ellipticity,
secondLatitude
);
return Math.atan2(
CesiumMath.negativePiToPi(secondLongitude - firstLongitude),
sigma2 - sigma1
);
}
function calculateArcLength(
ellipsoidRhumbLine,
major,
minor,
firstLongitude,
firstLatitude,
secondLongitude,
secondLatitude
) {
const heading = ellipsoidRhumbLine._heading;
const deltaLongitude = secondLongitude - firstLongitude;
let distance = 0.0;
//Check to see if the rhumb line has constant latitude
//This equation will diverge if heading gets close to 90 degrees
if (
CesiumMath.equalsEpsilon(
Math.abs(heading),
CesiumMath.PI_OVER_TWO,
CesiumMath.EPSILON8
)
) {
//If heading is close to 90 degrees
if (major === minor) {
distance =
major *
Math.cos(firstLatitude) *
CesiumMath.negativePiToPi(deltaLongitude);
} else {
const sinPhi = Math.sin(firstLatitude);
distance =
(major *
Math.cos(firstLatitude) *
CesiumMath.negativePiToPi(deltaLongitude)) /
Math.sqrt(1 - ellipsoidRhumbLine._ellipticitySquared * sinPhi * sinPhi);
}
} else {
const M1 = calculateM(
ellipsoidRhumbLine._ellipticity,
major,
firstLatitude
);
const M2 = calculateM(
ellipsoidRhumbLine._ellipticity,
major,
secondLatitude
);
distance = (M2 - M1) / Math.cos(heading);
}
return Math.abs(distance);
}
const scratchCart1 = new Cartesian3();
const scratchCart2 = new Cartesian3();
function computeProperties(ellipsoidRhumbLine, start, end, ellipsoid) {
const firstCartesian = Cartesian3.normalize(
ellipsoid.cartographicToCartesian(start, scratchCart2),
scratchCart1
);
const lastCartesian = Cartesian3.normalize(
ellipsoid.cartographicToCartesian(end, scratchCart2),
scratchCart2
);
//>>includeStart('debug', pragmas.debug);
Check.typeOf.number.greaterThanOrEquals(
"value",
Math.abs(
Math.abs(Cartesian3.angleBetween(firstCartesian, lastCartesian)) - Math.PI
),
0.0125
);
//>>includeEnd('debug');
const major = ellipsoid.maximumRadius;
const minor = ellipsoid.minimumRadius;
const majorSquared = major * major;
const minorSquared = minor * minor;
ellipsoidRhumbLine._ellipticitySquared =
(majorSquared - minorSquared) / majorSquared;
ellipsoidRhumbLine._ellipticity = Math.sqrt(
ellipsoidRhumbLine._ellipticitySquared
);
ellipsoidRhumbLine._start = Cartographic.clone(
start,
ellipsoidRhumbLine._start
);
ellipsoidRhumbLine._start.height = 0;
ellipsoidRhumbLine._end = Cartographic.clone(end, ellipsoidRhumbLine._end);
ellipsoidRhumbLine._end.height = 0;
ellipsoidRhumbLine._heading = calculateHeading(
ellipsoidRhumbLine,
start.longitude,
start.latitude,
end.longitude,
end.latitude
);
ellipsoidRhumbLine._distance = calculateArcLength(
ellipsoidRhumbLine,
ellipsoid.maximumRadius,
ellipsoid.minimumRadius,
start.longitude,
start.latitude,
end.longitude,
end.latitude
);
}
function interpolateUsingSurfaceDistance(
start,
heading,
distance,
major,
ellipticity,
result
) {
if (distance === 0.0) {
return Cartographic.clone(start, result);
}
const ellipticitySquared = ellipticity * ellipticity;
let longitude;
let latitude;
let deltaLongitude;
//Check to see if the rhumb line has constant latitude
//This won't converge if heading is close to 90 degrees
if (
Math.abs(CesiumMath.PI_OVER_TWO - Math.abs(heading)) > CesiumMath.EPSILON8
) {
//Calculate latitude of the second point
const M1 = calculateM(ellipticity, major, start.latitude);
const deltaM = distance * Math.cos(heading);
const M2 = M1 + deltaM;
latitude = calculateInverseM(M2, ellipticity, major);
//Now find the longitude of the second point
const sigma1 = calculateSigma(ellipticity, start.latitude);
const sigma2 = calculateSigma(ellipticity, latitude);
deltaLongitude = Math.tan(heading) * (sigma2 - sigma1);
longitude = CesiumMath.negativePiToPi(start.longitude + deltaLongitude);
} else {
//If heading is close to 90 degrees
latitude = start.latitude;
let localRad;
if (ellipticity === 0.0) {
// sphere
localRad = major * Math.cos(start.latitude);
} else {
const sinPhi = Math.sin(start.latitude);
localRad =
(major * Math.cos(start.latitude)) /
Math.sqrt(1 - ellipticitySquared * sinPhi * sinPhi);
}
deltaLongitude = distance / localRad;
if (heading > 0.0) {
longitude = CesiumMath.negativePiToPi(start.longitude + deltaLongitude);
} else {
longitude = CesiumMath.negativePiToPi(start.longitude - deltaLongitude);
}
}
if (defined(result)) {
result.longitude = longitude;
result.latitude = latitude;
result.height = 0;
return result;
}
return new Cartographic(longitude, latitude, 0);
}
/**
* Initializes a rhumb line on the ellipsoid connecting the two provided planetodetic points.
*
* @alias EllipsoidRhumbLine
* @constructor
*
* @param {Cartographic} [start] The initial planetodetic point on the path.
* @param {Cartographic} [end] The final planetodetic point on the path.
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the rhumb line lies.
*
* @exception {DeveloperError} angle between start and end must be at least 0.0125 radians.
*/
function EllipsoidRhumbLine(start, end, ellipsoid) {
const e = defaultValue(ellipsoid, Ellipsoid.WGS84);
this._ellipsoid = e;
this._start = new Cartographic();
this._end = new Cartographic();
this._heading = undefined;
this._distance = undefined;
this._ellipticity = undefined;
this._ellipticitySquared = undefined;
if (defined(start) && defined(end)) {
computeProperties(this, start, end, e);
}
}
Object.defineProperties(EllipsoidRhumbLine.prototype, {
/**
* Gets the ellipsoid.
* @memberof EllipsoidRhumbLine.prototype
* @type {Ellipsoid}
* @readonly
*/
ellipsoid: {
get: function () {
return this._ellipsoid;
},
},
/**
* Gets the surface distance between the start and end point
* @memberof EllipsoidRhumbLine.prototype
* @type {Number}
* @readonly
*/
surfaceDistance: {
get: function () {
//>>includeStart('debug', pragmas.debug);
Check.defined("distance", this._distance);
//>>includeEnd('debug');
return this._distance;
},
},
/**
* Gets the initial planetodetic point on the path.
* @memberof EllipsoidRhumbLine.prototype
* @type {Cartographic}
* @readonly
*/
start: {
get: function () {
return this._start;
},
},
/**
* Gets the final planetodetic point on the path.
* @memberof EllipsoidRhumbLine.prototype
* @type {Cartographic}
* @readonly
*/
end: {
get: function () {
return this._end;
},
},
/**
* Gets the heading from the start point to the end point.
* @memberof EllipsoidRhumbLine.prototype
* @type {Number}
* @readonly
*/
heading: {
get: function () {
//>>includeStart('debug', pragmas.debug);
Check.defined("distance", this._distance);
//>>includeEnd('debug');
return this._heading;
},
},
});
/**
* Create a rhumb line using an initial position with a heading and distance.
*
* @param {Cartographic} start The initial planetodetic point on the path.
* @param {Number} heading The heading in radians.
* @param {Number} distance The rhumb line distance between the start and end point.
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the rhumb line lies.
* @param {EllipsoidRhumbLine} [result] The object in which to store the result.
* @returns {EllipsoidRhumbLine} The EllipsoidRhumbLine object.
*/
EllipsoidRhumbLine.fromStartHeadingDistance = function (
start,
heading,
distance,
ellipsoid,
result
) {
//>>includeStart('debug', pragmas.debug);
Check.defined("start", start);
Check.defined("heading", heading);
Check.defined("distance", distance);
Check.typeOf.number.greaterThan("distance", distance, 0.0);
//>>includeEnd('debug');
const e = defaultValue(ellipsoid, Ellipsoid.WGS84);
const major = e.maximumRadius;
const minor = e.minimumRadius;
const majorSquared = major * major;
const minorSquared = minor * minor;
const ellipticity = Math.sqrt((majorSquared - minorSquared) / majorSquared);
heading = CesiumMath.negativePiToPi(heading);
const end = interpolateUsingSurfaceDistance(
start,
heading,
distance,
e.maximumRadius,
ellipticity
);
if (
!defined(result) ||
(defined(ellipsoid) && !ellipsoid.equals(result.ellipsoid))
) {
return new EllipsoidRhumbLine(start, end, e);
}
result.setEndPoints(start, end);
return result;
};
/**
* Sets the start and end points of the rhumb line.
*
* @param {Cartographic} start The initial planetodetic point on the path.
* @param {Cartographic} end The final planetodetic point on the path.
*/
EllipsoidRhumbLine.prototype.setEndPoints = function (start, end) {
//>>includeStart('debug', pragmas.debug);
Check.defined("start", start);
Check.defined("end", end);
//>>includeEnd('debug');
computeProperties(this, start, end, this._ellipsoid);
};
/**
* Provides the location of a point at the indicated portion along the rhumb line.
*
* @param {Number} fraction The portion of the distance between the initial and final points.
* @param {Cartographic} [result] The object in which to store the result.
* @returns {Cartographic} The location of the point along the rhumb line.
*/
EllipsoidRhumbLine.prototype.interpolateUsingFraction = function (
fraction,
result
) {
return this.interpolateUsingSurfaceDistance(
fraction * this._distance,
result
);
};
/**
* Provides the location of a point at the indicated distance along the rhumb line.
*
* @param {Number} distance The distance from the inital point to the point of interest along the rhumbLine.
* @param {Cartographic} [result] The object in which to store the result.
* @returns {Cartographic} The location of the point along the rhumb line.
*
* @exception {DeveloperError} start and end must be set before calling function interpolateUsingSurfaceDistance
*/
EllipsoidRhumbLine.prototype.interpolateUsingSurfaceDistance = function (
distance,
result
) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.number("distance", distance);
if (!defined(this._distance) || this._distance === 0.0) {
throw new DeveloperError(
"EllipsoidRhumbLine must have distinct start and end set."
);
}
//>>includeEnd('debug');
return interpolateUsingSurfaceDistance(
this._start,
this._heading,
distance,
this._ellipsoid.maximumRadius,
this._ellipticity,
result
);
};
/**
* Provides the location of a point at the indicated longitude along the rhumb line.
* If the longitude is outside the range of start and end points, the first intersection with the longitude from the start point in the direction of the heading is returned. This follows the spiral property of a rhumb line.
*
* @param {Number} intersectionLongitude The longitude, in radians, at which to find the intersection point from the starting point using the heading.
* @param {Cartographic} [result] The object in which to store the result.
* @returns {Cartographic} The location of the intersection point along the rhumb line, undefined if there is no intersection or infinite intersections.
*
* @exception {DeveloperError} start and end must be set before calling function findIntersectionWithLongitude.
*/
EllipsoidRhumbLine.prototype.findIntersectionWithLongitude = function (
intersectionLongitude,
result
) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.number("intersectionLongitude", intersectionLongitude);
if (!defined(this._distance) || this._distance === 0.0) {
throw new DeveloperError(
"EllipsoidRhumbLine must have distinct start and end set."
);
}
//>>includeEnd('debug');
const ellipticity = this._ellipticity;
const heading = this._heading;
const absHeading = Math.abs(heading);
const start = this._start;
intersectionLongitude = CesiumMath.negativePiToPi(intersectionLongitude);
if (
CesiumMath.equalsEpsilon(
Math.abs(intersectionLongitude),
Math.PI,
CesiumMath.EPSILON14
)
) {
intersectionLongitude = CesiumMath.sign(start.longitude) * Math.PI;
}
if (!defined(result)) {
result = new Cartographic();
}
// If heading is -PI/2 or PI/2, this is an E-W rhumb line
// If heading is 0 or PI, this is an N-S rhumb line
if (Math.abs(CesiumMath.PI_OVER_TWO - absHeading) <= CesiumMath.EPSILON8) {
result.longitude = intersectionLongitude;
result.latitude = start.latitude;
result.height = 0;
return result;
} else if (
CesiumMath.equalsEpsilon(
Math.abs(CesiumMath.PI_OVER_TWO - absHeading),
CesiumMath.PI_OVER_TWO,
CesiumMath.EPSILON8
)
) {
if (
CesiumMath.equalsEpsilon(
intersectionLongitude,
start.longitude,
CesiumMath.EPSILON12
)
) {
return undefined;
}
result.longitude = intersectionLongitude;
result.latitude =
CesiumMath.PI_OVER_TWO *
CesiumMath.sign(CesiumMath.PI_OVER_TWO - heading);
result.height = 0;
return result;
}
// Use iterative solver from Equation 9 from http://edwilliams.org/ellipsoid/ellipsoid.pdf
const phi1 = start.latitude;
const eSinPhi1 = ellipticity * Math.sin(phi1);
const leftComponent =
Math.tan(0.5 * (CesiumMath.PI_OVER_TWO + phi1)) *
Math.exp((intersectionLongitude - start.longitude) / Math.tan(heading));
const denominator = (1 + eSinPhi1) / (1 - eSinPhi1);
let newPhi = start.latitude;
let phi;
do {
phi = newPhi;
const eSinPhi = ellipticity * Math.sin(phi);
const numerator = (1 + eSinPhi) / (1 - eSinPhi);
newPhi =
2 *
Math.atan(
leftComponent * Math.pow(numerator / denominator, ellipticity / 2)
) -
CesiumMath.PI_OVER_TWO;
} while (!CesiumMath.equalsEpsilon(newPhi, phi, CesiumMath.EPSILON12));
result.longitude = intersectionLongitude;
result.latitude = newPhi;
result.height = 0;
return result;
};
/**
* Provides the location of a point at the indicated latitude along the rhumb line.
* If the latitude is outside the range of start and end points, the first intersection with the latitude from that start point in the direction of the heading is returned. This follows the spiral property of a rhumb line.
*
* @param {Number} intersectionLatitude The latitude, in radians, at which to find the intersection point from the starting point using the heading.
* @param {Cartographic} [result] The object in which to store the result.
* @returns {Cartographic} The location of the intersection point along the rhumb line, undefined if there is no intersection or infinite intersections.
*
* @exception {DeveloperError} start and end must be set before calling function findIntersectionWithLongitude.
*/
EllipsoidRhumbLine.prototype.findIntersectionWithLatitude = function (
intersectionLatitude,
result
) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.number("intersectionLatitude", intersectionLatitude);
if (!defined(this._distance) || this._distance === 0.0) {
throw new DeveloperError(
"EllipsoidRhumbLine must have distinct start and end set."
);
}
//>>includeEnd('debug');
const ellipticity = this._ellipticity;
const heading = this._heading;
const start = this._start;
// If start and end have same latitude, return undefined since it's either no intersection or infinite intersections
if (
CesiumMath.equalsEpsilon(
Math.abs(heading),
CesiumMath.PI_OVER_TWO,
CesiumMath.EPSILON8
)
) {
return;
}
// Can be solved using the same equations from interpolateUsingSurfaceDistance
const sigma1 = calculateSigma(ellipticity, start.latitude);
const sigma2 = calculateSigma(ellipticity, intersectionLatitude);
const deltaLongitude = Math.tan(heading) * (sigma2 - sigma1);
const longitude = CesiumMath.negativePiToPi(start.longitude + deltaLongitude);
if (defined(result)) {
result.longitude = longitude;
result.latitude = intersectionLatitude;
result.height = 0;
return result;
}
return new Cartographic(longitude, intersectionLatitude, 0);
};
export default EllipsoidRhumbLine;