-
Notifications
You must be signed in to change notification settings - Fork 3.6k
/
Copy pathTransforms.js
1132 lines (1040 loc) · 38.5 KB
/
Transforms.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import Cartesian2 from "./Cartesian2.js";
import Cartesian3 from "./Cartesian3.js";
import Cartesian4 from "./Cartesian4.js";
import Cartographic from "./Cartographic.js";
import Check from "./Check.js";
import defaultValue from "./defaultValue.js";
import defined from "./defined.js";
import DeveloperError from "./DeveloperError.js";
import EarthOrientationParameters from "./EarthOrientationParameters.js";
import EarthOrientationParametersSample from "./EarthOrientationParametersSample.js";
import Ellipsoid from "./Ellipsoid.js";
import HeadingPitchRoll from "./HeadingPitchRoll.js";
import Iau2006XysData from "./Iau2006XysData.js";
import Iau2006XysSample from "./Iau2006XysSample.js";
import JulianDate from "./JulianDate.js";
import CesiumMath from "./Math.js";
import Matrix3 from "./Matrix3.js";
import Matrix4 from "./Matrix4.js";
import Quaternion from "./Quaternion.js";
import TimeConstants from "./TimeConstants.js";
/**
* Contains functions for transforming positions to various reference frames.
*
* @namespace Transforms
*/
const Transforms = {};
const vectorProductLocalFrame = {
up: {
south: "east",
north: "west",
west: "south",
east: "north",
},
down: {
south: "west",
north: "east",
west: "north",
east: "south",
},
south: {
up: "west",
down: "east",
west: "down",
east: "up",
},
north: {
up: "east",
down: "west",
west: "up",
east: "down",
},
west: {
up: "north",
down: "south",
north: "down",
south: "up",
},
east: {
up: "south",
down: "north",
north: "up",
south: "down",
},
};
const degeneratePositionLocalFrame = {
north: [-1, 0, 0],
east: [0, 1, 0],
up: [0, 0, 1],
south: [1, 0, 0],
west: [0, -1, 0],
down: [0, 0, -1],
};
const localFrameToFixedFrameCache = {};
const scratchCalculateCartesian = {
east: new Cartesian3(),
north: new Cartesian3(),
up: new Cartesian3(),
west: new Cartesian3(),
south: new Cartesian3(),
down: new Cartesian3(),
};
let scratchFirstCartesian = new Cartesian3();
let scratchSecondCartesian = new Cartesian3();
let scratchThirdCartesian = new Cartesian3();
/**
* Generates a function that computes a 4x4 transformation matrix from a reference frame
* centered at the provided origin to the provided ellipsoid's fixed reference frame.
* @param {String} firstAxis name of the first axis of the local reference frame. Must be
* 'east', 'north', 'up', 'west', 'south' or 'down'.
* @param {String} secondAxis name of the second axis of the local reference frame. Must be
* 'east', 'north', 'up', 'west', 'south' or 'down'.
* @return {Transforms.LocalFrameToFixedFrame} The function that will computes a
* 4x4 transformation matrix from a reference frame, with first axis and second axis compliant with the parameters,
*/
Transforms.localFrameToFixedFrameGenerator = function (firstAxis, secondAxis) {
if (
!vectorProductLocalFrame.hasOwnProperty(firstAxis) ||
!vectorProductLocalFrame[firstAxis].hasOwnProperty(secondAxis)
) {
throw new DeveloperError(
"firstAxis and secondAxis must be east, north, up, west, south or down."
);
}
const thirdAxis = vectorProductLocalFrame[firstAxis][secondAxis];
/**
* Computes a 4x4 transformation matrix from a reference frame
* centered at the provided origin to the provided ellipsoid's fixed reference frame.
* @callback Transforms.LocalFrameToFixedFrame
* @param {Cartesian3} origin The center point of the local reference frame.
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
* @param {Matrix4} [result] The object onto which to store the result.
* @returns {Matrix4} The modified result parameter or a new Matrix4 instance if none was provided.
*/
let resultat;
const hashAxis = firstAxis + secondAxis;
if (defined(localFrameToFixedFrameCache[hashAxis])) {
resultat = localFrameToFixedFrameCache[hashAxis];
} else {
resultat = function (origin, ellipsoid, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(origin)) {
throw new DeveloperError("origin is required.");
}
//>>includeEnd('debug');
if (!defined(result)) {
result = new Matrix4();
}
if (
Cartesian3.equalsEpsilon(origin, Cartesian3.ZERO, CesiumMath.EPSILON14)
) {
// If x, y, and z are zero, use the degenerate local frame, which is a special case
Cartesian3.unpack(
degeneratePositionLocalFrame[firstAxis],
0,
scratchFirstCartesian
);
Cartesian3.unpack(
degeneratePositionLocalFrame[secondAxis],
0,
scratchSecondCartesian
);
Cartesian3.unpack(
degeneratePositionLocalFrame[thirdAxis],
0,
scratchThirdCartesian
);
} else if (
CesiumMath.equalsEpsilon(origin.x, 0.0, CesiumMath.EPSILON14) &&
CesiumMath.equalsEpsilon(origin.y, 0.0, CesiumMath.EPSILON14)
) {
// If x and y are zero, assume origin is at a pole, which is a special case.
const sign = CesiumMath.sign(origin.z);
Cartesian3.unpack(
degeneratePositionLocalFrame[firstAxis],
0,
scratchFirstCartesian
);
if (firstAxis !== "east" && firstAxis !== "west") {
Cartesian3.multiplyByScalar(
scratchFirstCartesian,
sign,
scratchFirstCartesian
);
}
Cartesian3.unpack(
degeneratePositionLocalFrame[secondAxis],
0,
scratchSecondCartesian
);
if (secondAxis !== "east" && secondAxis !== "west") {
Cartesian3.multiplyByScalar(
scratchSecondCartesian,
sign,
scratchSecondCartesian
);
}
Cartesian3.unpack(
degeneratePositionLocalFrame[thirdAxis],
0,
scratchThirdCartesian
);
if (thirdAxis !== "east" && thirdAxis !== "west") {
Cartesian3.multiplyByScalar(
scratchThirdCartesian,
sign,
scratchThirdCartesian
);
}
} else {
ellipsoid = defaultValue(ellipsoid, Ellipsoid.WGS84);
ellipsoid.geodeticSurfaceNormal(origin, scratchCalculateCartesian.up);
const up = scratchCalculateCartesian.up;
const east = scratchCalculateCartesian.east;
east.x = -origin.y;
east.y = origin.x;
east.z = 0.0;
Cartesian3.normalize(east, scratchCalculateCartesian.east);
Cartesian3.cross(up, east, scratchCalculateCartesian.north);
Cartesian3.multiplyByScalar(
scratchCalculateCartesian.up,
-1,
scratchCalculateCartesian.down
);
Cartesian3.multiplyByScalar(
scratchCalculateCartesian.east,
-1,
scratchCalculateCartesian.west
);
Cartesian3.multiplyByScalar(
scratchCalculateCartesian.north,
-1,
scratchCalculateCartesian.south
);
scratchFirstCartesian = scratchCalculateCartesian[firstAxis];
scratchSecondCartesian = scratchCalculateCartesian[secondAxis];
scratchThirdCartesian = scratchCalculateCartesian[thirdAxis];
}
result[0] = scratchFirstCartesian.x;
result[1] = scratchFirstCartesian.y;
result[2] = scratchFirstCartesian.z;
result[3] = 0.0;
result[4] = scratchSecondCartesian.x;
result[5] = scratchSecondCartesian.y;
result[6] = scratchSecondCartesian.z;
result[7] = 0.0;
result[8] = scratchThirdCartesian.x;
result[9] = scratchThirdCartesian.y;
result[10] = scratchThirdCartesian.z;
result[11] = 0.0;
result[12] = origin.x;
result[13] = origin.y;
result[14] = origin.z;
result[15] = 1.0;
return result;
};
localFrameToFixedFrameCache[hashAxis] = resultat;
}
return resultat;
};
/**
* Computes a 4x4 transformation matrix from a reference frame with an east-north-up axes
* centered at the provided origin to the provided ellipsoid's fixed reference frame.
* The local axes are defined as:
* <ul>
* <li>The <code>x</code> axis points in the local east direction.</li>
* <li>The <code>y</code> axis points in the local north direction.</li>
* <li>The <code>z</code> axis points in the direction of the ellipsoid surface normal which passes through the position.</li>
* </ul>
*
* @function
* @param {Cartesian3} origin The center point of the local reference frame.
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
* @param {Matrix4} [result] The object onto which to store the result.
* @returns {Matrix4} The modified result parameter or a new Matrix4 instance if none was provided.
*
* @example
* // Get the transform from local east-north-up at cartographic (0.0, 0.0) to Earth's fixed frame.
* const center = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
* const transform = Cesium.Transforms.eastNorthUpToFixedFrame(center);
*/
Transforms.eastNorthUpToFixedFrame = Transforms.localFrameToFixedFrameGenerator(
"east",
"north"
);
/**
* Computes a 4x4 transformation matrix from a reference frame with an north-east-down axes
* centered at the provided origin to the provided ellipsoid's fixed reference frame.
* The local axes are defined as:
* <ul>
* <li>The <code>x</code> axis points in the local north direction.</li>
* <li>The <code>y</code> axis points in the local east direction.</li>
* <li>The <code>z</code> axis points in the opposite direction of the ellipsoid surface normal which passes through the position.</li>
* </ul>
*
* @function
* @param {Cartesian3} origin The center point of the local reference frame.
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
* @param {Matrix4} [result] The object onto which to store the result.
* @returns {Matrix4} The modified result parameter or a new Matrix4 instance if none was provided.
*
* @example
* // Get the transform from local north-east-down at cartographic (0.0, 0.0) to Earth's fixed frame.
* const center = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
* const transform = Cesium.Transforms.northEastDownToFixedFrame(center);
*/
Transforms.northEastDownToFixedFrame = Transforms.localFrameToFixedFrameGenerator(
"north",
"east"
);
/**
* Computes a 4x4 transformation matrix from a reference frame with an north-up-east axes
* centered at the provided origin to the provided ellipsoid's fixed reference frame.
* The local axes are defined as:
* <ul>
* <li>The <code>x</code> axis points in the local north direction.</li>
* <li>The <code>y</code> axis points in the direction of the ellipsoid surface normal which passes through the position.</li>
* <li>The <code>z</code> axis points in the local east direction.</li>
* </ul>
*
* @function
* @param {Cartesian3} origin The center point of the local reference frame.
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
* @param {Matrix4} [result] The object onto which to store the result.
* @returns {Matrix4} The modified result parameter or a new Matrix4 instance if none was provided.
*
* @example
* // Get the transform from local north-up-east at cartographic (0.0, 0.0) to Earth's fixed frame.
* const center = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
* const transform = Cesium.Transforms.northUpEastToFixedFrame(center);
*/
Transforms.northUpEastToFixedFrame = Transforms.localFrameToFixedFrameGenerator(
"north",
"up"
);
/**
* Computes a 4x4 transformation matrix from a reference frame with an north-west-up axes
* centered at the provided origin to the provided ellipsoid's fixed reference frame.
* The local axes are defined as:
* <ul>
* <li>The <code>x</code> axis points in the local north direction.</li>
* <li>The <code>y</code> axis points in the local west direction.</li>
* <li>The <code>z</code> axis points in the direction of the ellipsoid surface normal which passes through the position.</li>
* </ul>
*
* @function
* @param {Cartesian3} origin The center point of the local reference frame.
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
* @param {Matrix4} [result] The object onto which to store the result.
* @returns {Matrix4} The modified result parameter or a new Matrix4 instance if none was provided.
*
* @example
* // Get the transform from local north-West-Up at cartographic (0.0, 0.0) to Earth's fixed frame.
* const center = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
* const transform = Cesium.Transforms.northWestUpToFixedFrame(center);
*/
Transforms.northWestUpToFixedFrame = Transforms.localFrameToFixedFrameGenerator(
"north",
"west"
);
const scratchHPRQuaternion = new Quaternion();
const scratchScale = new Cartesian3(1.0, 1.0, 1.0);
const scratchHPRMatrix4 = new Matrix4();
/**
* Computes a 4x4 transformation matrix from a reference frame with axes computed from the heading-pitch-roll angles
* centered at the provided origin to the provided ellipsoid's fixed reference frame. Heading is the rotation from the local north
* direction where a positive angle is increasing eastward. Pitch is the rotation from the local east-north plane. Positive pitch angles
* are above the plane. Negative pitch angles are below the plane. Roll is the first rotation applied about the local east axis.
*
* @param {Cartesian3} origin The center point of the local reference frame.
* @param {HeadingPitchRoll} headingPitchRoll The heading, pitch, and roll.
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
* @param {Transforms.LocalFrameToFixedFrame} [fixedFrameTransform=Transforms.eastNorthUpToFixedFrame] A 4x4 transformation
* matrix from a reference frame to the provided ellipsoid's fixed reference frame
* @param {Matrix4} [result] The object onto which to store the result.
* @returns {Matrix4} The modified result parameter or a new Matrix4 instance if none was provided.
*
* @example
* // Get the transform from local heading-pitch-roll at cartographic (0.0, 0.0) to Earth's fixed frame.
* const center = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
* const heading = -Cesium.Math.PI_OVER_TWO;
* const pitch = Cesium.Math.PI_OVER_FOUR;
* const roll = 0.0;
* const hpr = new Cesium.HeadingPitchRoll(heading, pitch, roll);
* const transform = Cesium.Transforms.headingPitchRollToFixedFrame(center, hpr);
*/
Transforms.headingPitchRollToFixedFrame = function (
origin,
headingPitchRoll,
ellipsoid,
fixedFrameTransform,
result
) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("HeadingPitchRoll", headingPitchRoll);
//>>includeEnd('debug');
fixedFrameTransform = defaultValue(
fixedFrameTransform,
Transforms.eastNorthUpToFixedFrame
);
const hprQuaternion = Quaternion.fromHeadingPitchRoll(
headingPitchRoll,
scratchHPRQuaternion
);
const hprMatrix = Matrix4.fromTranslationQuaternionRotationScale(
Cartesian3.ZERO,
hprQuaternion,
scratchScale,
scratchHPRMatrix4
);
result = fixedFrameTransform(origin, ellipsoid, result);
return Matrix4.multiply(result, hprMatrix, result);
};
const scratchENUMatrix4 = new Matrix4();
const scratchHPRMatrix3 = new Matrix3();
/**
* Computes a quaternion from a reference frame with axes computed from the heading-pitch-roll angles
* centered at the provided origin. Heading is the rotation from the local north
* direction where a positive angle is increasing eastward. Pitch is the rotation from the local east-north plane. Positive pitch angles
* are above the plane. Negative pitch angles are below the plane. Roll is the first rotation applied about the local east axis.
*
* @param {Cartesian3} origin The center point of the local reference frame.
* @param {HeadingPitchRoll} headingPitchRoll The heading, pitch, and roll.
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
* @param {Transforms.LocalFrameToFixedFrame} [fixedFrameTransform=Transforms.eastNorthUpToFixedFrame] A 4x4 transformation
* matrix from a reference frame to the provided ellipsoid's fixed reference frame
* @param {Quaternion} [result] The object onto which to store the result.
* @returns {Quaternion} The modified result parameter or a new Quaternion instance if none was provided.
*
* @example
* // Get the quaternion from local heading-pitch-roll at cartographic (0.0, 0.0) to Earth's fixed frame.
* const center = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
* const heading = -Cesium.Math.PI_OVER_TWO;
* const pitch = Cesium.Math.PI_OVER_FOUR;
* const roll = 0.0;
* const hpr = new HeadingPitchRoll(heading, pitch, roll);
* const quaternion = Cesium.Transforms.headingPitchRollQuaternion(center, hpr);
*/
Transforms.headingPitchRollQuaternion = function (
origin,
headingPitchRoll,
ellipsoid,
fixedFrameTransform,
result
) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("HeadingPitchRoll", headingPitchRoll);
//>>includeEnd('debug');
const transform = Transforms.headingPitchRollToFixedFrame(
origin,
headingPitchRoll,
ellipsoid,
fixedFrameTransform,
scratchENUMatrix4
);
const rotation = Matrix4.getMatrix3(transform, scratchHPRMatrix3);
return Quaternion.fromRotationMatrix(rotation, result);
};
const noScale = new Cartesian3(1.0, 1.0, 1.0);
const hprCenterScratch = new Cartesian3();
const ffScratch = new Matrix4();
const hprTransformScratch = new Matrix4();
const hprRotationScratch = new Matrix3();
const hprQuaternionScratch = new Quaternion();
/**
* Computes heading-pitch-roll angles from a transform in a particular reference frame. Heading is the rotation from the local north
* direction where a positive angle is increasing eastward. Pitch is the rotation from the local east-north plane. Positive pitch angles
* are above the plane. Negative pitch angles are below the plane. Roll is the first rotation applied about the local east axis.
*
* @param {Matrix4} transform The transform
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
* @param {Transforms.LocalFrameToFixedFrame} [fixedFrameTransform=Transforms.eastNorthUpToFixedFrame] A 4x4 transformation
* matrix from a reference frame to the provided ellipsoid's fixed reference frame
* @param {HeadingPitchRoll} [result] The object onto which to store the result.
* @returns {HeadingPitchRoll} The modified result parameter or a new HeadingPitchRoll instance if none was provided.
*/
Transforms.fixedFrameToHeadingPitchRoll = function (
transform,
ellipsoid,
fixedFrameTransform,
result
) {
//>>includeStart('debug', pragmas.debug);
Check.defined("transform", transform);
//>>includeEnd('debug');
ellipsoid = defaultValue(ellipsoid, Ellipsoid.WGS84);
fixedFrameTransform = defaultValue(
fixedFrameTransform,
Transforms.eastNorthUpToFixedFrame
);
if (!defined(result)) {
result = new HeadingPitchRoll();
}
const center = Matrix4.getTranslation(transform, hprCenterScratch);
if (Cartesian3.equals(center, Cartesian3.ZERO)) {
result.heading = 0;
result.pitch = 0;
result.roll = 0;
return result;
}
let toFixedFrame = Matrix4.inverseTransformation(
fixedFrameTransform(center, ellipsoid, ffScratch),
ffScratch
);
let transformCopy = Matrix4.setScale(transform, noScale, hprTransformScratch);
transformCopy = Matrix4.setTranslation(
transformCopy,
Cartesian3.ZERO,
transformCopy
);
toFixedFrame = Matrix4.multiply(toFixedFrame, transformCopy, toFixedFrame);
let quaternionRotation = Quaternion.fromRotationMatrix(
Matrix4.getMatrix3(toFixedFrame, hprRotationScratch),
hprQuaternionScratch
);
quaternionRotation = Quaternion.normalize(
quaternionRotation,
quaternionRotation
);
return HeadingPitchRoll.fromQuaternion(quaternionRotation, result);
};
const gmstConstant0 = 6 * 3600 + 41 * 60 + 50.54841;
const gmstConstant1 = 8640184.812866;
const gmstConstant2 = 0.093104;
const gmstConstant3 = -6.2e-6;
const rateCoef = 1.1772758384668e-19;
const wgs84WRPrecessing = 7.2921158553e-5;
const twoPiOverSecondsInDay = CesiumMath.TWO_PI / 86400.0;
let dateInUtc = new JulianDate();
/**
* Computes a rotation matrix to transform a point or vector from True Equator Mean Equinox (TEME) axes to the
* pseudo-fixed axes at a given time. This method treats the UT1 time standard as equivalent to UTC.
*
* @param {JulianDate} date The time at which to compute the rotation matrix.
* @param {Matrix3} [result] The object onto which to store the result.
* @returns {Matrix3} The modified result parameter or a new Matrix3 instance if none was provided.
*
* @example
* //Set the view to the inertial frame.
* scene.postUpdate.addEventListener(function(scene, time) {
* const now = Cesium.JulianDate.now();
* const offset = Cesium.Matrix4.multiplyByPoint(camera.transform, camera.position, new Cesium.Cartesian3());
* const transform = Cesium.Matrix4.fromRotationTranslation(Cesium.Transforms.computeTemeToPseudoFixedMatrix(now));
* const inverseTransform = Cesium.Matrix4.inverseTransformation(transform, new Cesium.Matrix4());
* Cesium.Matrix4.multiplyByPoint(inverseTransform, offset, offset);
* camera.lookAtTransform(transform, offset);
* });
*/
Transforms.computeTemeToPseudoFixedMatrix = function (date, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(date)) {
throw new DeveloperError("date is required.");
}
//>>includeEnd('debug');
// GMST is actually computed using UT1. We're using UTC as an approximation of UT1.
// We do not want to use the function like convertTaiToUtc in JulianDate because
// we explicitly do not want to fail when inside the leap second.
dateInUtc = JulianDate.addSeconds(
date,
-JulianDate.computeTaiMinusUtc(date),
dateInUtc
);
const utcDayNumber = dateInUtc.dayNumber;
const utcSecondsIntoDay = dateInUtc.secondsOfDay;
let t;
const diffDays = utcDayNumber - 2451545;
if (utcSecondsIntoDay >= 43200.0) {
t = (diffDays + 0.5) / TimeConstants.DAYS_PER_JULIAN_CENTURY;
} else {
t = (diffDays - 0.5) / TimeConstants.DAYS_PER_JULIAN_CENTURY;
}
const gmst0 =
gmstConstant0 +
t * (gmstConstant1 + t * (gmstConstant2 + t * gmstConstant3));
const angle = (gmst0 * twoPiOverSecondsInDay) % CesiumMath.TWO_PI;
const ratio = wgs84WRPrecessing + rateCoef * (utcDayNumber - 2451545.5);
const secondsSinceMidnight =
(utcSecondsIntoDay + TimeConstants.SECONDS_PER_DAY * 0.5) %
TimeConstants.SECONDS_PER_DAY;
const gha = angle + ratio * secondsSinceMidnight;
const cosGha = Math.cos(gha);
const sinGha = Math.sin(gha);
if (!defined(result)) {
return new Matrix3(
cosGha,
sinGha,
0.0,
-sinGha,
cosGha,
0.0,
0.0,
0.0,
1.0
);
}
result[0] = cosGha;
result[1] = -sinGha;
result[2] = 0.0;
result[3] = sinGha;
result[4] = cosGha;
result[5] = 0.0;
result[6] = 0.0;
result[7] = 0.0;
result[8] = 1.0;
return result;
};
/**
* The source of IAU 2006 XYS data, used for computing the transformation between the
* Fixed and ICRF axes.
* @type {Iau2006XysData}
*
* @see Transforms.computeIcrfToFixedMatrix
* @see Transforms.computeFixedToIcrfMatrix
*
* @private
*/
Transforms.iau2006XysData = new Iau2006XysData();
/**
* The source of Earth Orientation Parameters (EOP) data, used for computing the transformation
* between the Fixed and ICRF axes. By default, zero values are used for all EOP values,
* yielding a reasonable but not completely accurate representation of the ICRF axes.
* @type {EarthOrientationParameters}
*
* @see Transforms.computeIcrfToFixedMatrix
* @see Transforms.computeFixedToIcrfMatrix
*
* @private
*/
Transforms.earthOrientationParameters = EarthOrientationParameters.NONE;
const ttMinusTai = 32.184;
const j2000ttDays = 2451545.0;
/**
* Preloads the data necessary to transform between the ICRF and Fixed axes, in either
* direction, over a given interval. This function returns a promise that, when resolved,
* indicates that the preload has completed.
*
* @param {TimeInterval} timeInterval The interval to preload.
* @returns {Promise<void>} A promise that, when resolved, indicates that the preload has completed
* and evaluation of the transformation between the fixed and ICRF axes will
* no longer return undefined for a time inside the interval.
*
*
* @example
* const interval = new Cesium.TimeInterval(...);
* Promise.resolve(Cesium.Transforms.preloadIcrfFixed(interval)).then(function() {
* // the data is now loaded
* });
*
* @see Transforms.computeIcrfToFixedMatrix
* @see Transforms.computeFixedToIcrfMatrix
*/
Transforms.preloadIcrfFixed = function (timeInterval) {
const startDayTT = timeInterval.start.dayNumber;
const startSecondTT = timeInterval.start.secondsOfDay + ttMinusTai;
const stopDayTT = timeInterval.stop.dayNumber;
const stopSecondTT = timeInterval.stop.secondsOfDay + ttMinusTai;
const xysPromise = Transforms.iau2006XysData.preload(
startDayTT,
startSecondTT,
stopDayTT,
stopSecondTT
);
const eopPromise = Transforms.earthOrientationParameters.getPromiseToLoad();
return Promise.all([xysPromise, eopPromise]);
};
/**
* Computes a rotation matrix to transform a point or vector from the International Celestial
* Reference Frame (GCRF/ICRF) inertial frame axes to the Earth-Fixed frame axes (ITRF)
* at a given time. This function may return undefined if the data necessary to
* do the transformation is not yet loaded.
*
* @param {JulianDate} date The time at which to compute the rotation matrix.
* @param {Matrix3} [result] The object onto which to store the result. If this parameter is
* not specified, a new instance is created and returned.
* @returns {Matrix3} The rotation matrix, or undefined if the data necessary to do the
* transformation is not yet loaded.
*
*
* @example
* scene.postUpdate.addEventListener(function(scene, time) {
* // View in ICRF.
* const icrfToFixed = Cesium.Transforms.computeIcrfToFixedMatrix(time);
* if (Cesium.defined(icrfToFixed)) {
* const offset = Cesium.Cartesian3.clone(camera.position);
* const transform = Cesium.Matrix4.fromRotationTranslation(icrfToFixed);
* camera.lookAtTransform(transform, offset);
* }
* });
*
* @see Transforms.preloadIcrfFixed
*/
Transforms.computeIcrfToFixedMatrix = function (date, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(date)) {
throw new DeveloperError("date is required.");
}
//>>includeEnd('debug');
if (!defined(result)) {
result = new Matrix3();
}
const fixedToIcrfMtx = Transforms.computeFixedToIcrfMatrix(date, result);
if (!defined(fixedToIcrfMtx)) {
return undefined;
}
return Matrix3.transpose(fixedToIcrfMtx, result);
};
const xysScratch = new Iau2006XysSample(0.0, 0.0, 0.0);
const eopScratch = new EarthOrientationParametersSample(
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
);
const rotation1Scratch = new Matrix3();
const rotation2Scratch = new Matrix3();
/**
* Computes a rotation matrix to transform a point or vector from the Earth-Fixed frame axes (ITRF)
* to the International Celestial Reference Frame (GCRF/ICRF) inertial frame axes
* at a given time. This function may return undefined if the data necessary to
* do the transformation is not yet loaded.
*
* @param {JulianDate} date The time at which to compute the rotation matrix.
* @param {Matrix3} [result] The object onto which to store the result. If this parameter is
* not specified, a new instance is created and returned.
* @returns {Matrix3} The rotation matrix, or undefined if the data necessary to do the
* transformation is not yet loaded.
*
*
* @example
* // Transform a point from the ICRF axes to the Fixed axes.
* const now = Cesium.JulianDate.now();
* const pointInFixed = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
* const fixedToIcrf = Cesium.Transforms.computeIcrfToFixedMatrix(now);
* let pointInInertial = new Cesium.Cartesian3();
* if (Cesium.defined(fixedToIcrf)) {
* pointInInertial = Cesium.Matrix3.multiplyByVector(fixedToIcrf, pointInFixed, pointInInertial);
* }
*
* @see Transforms.preloadIcrfFixed
*/
Transforms.computeFixedToIcrfMatrix = function (date, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(date)) {
throw new DeveloperError("date is required.");
}
//>>includeEnd('debug');
if (!defined(result)) {
result = new Matrix3();
}
// Compute pole wander
const eop = Transforms.earthOrientationParameters.compute(date, eopScratch);
if (!defined(eop)) {
return undefined;
}
// There is no external conversion to Terrestrial Time (TT).
// So use International Atomic Time (TAI) and convert using offsets.
// Here we are assuming that dayTT and secondTT are positive
const dayTT = date.dayNumber;
// It's possible here that secondTT could roll over 86400
// This does not seem to affect the precision (unit tests check for this)
const secondTT = date.secondsOfDay + ttMinusTai;
const xys = Transforms.iau2006XysData.computeXysRadians(
dayTT,
secondTT,
xysScratch
);
if (!defined(xys)) {
return undefined;
}
const x = xys.x + eop.xPoleOffset;
const y = xys.y + eop.yPoleOffset;
// Compute XYS rotation
const a = 1.0 / (1.0 + Math.sqrt(1.0 - x * x - y * y));
const rotation1 = rotation1Scratch;
rotation1[0] = 1.0 - a * x * x;
rotation1[3] = -a * x * y;
rotation1[6] = x;
rotation1[1] = -a * x * y;
rotation1[4] = 1 - a * y * y;
rotation1[7] = y;
rotation1[2] = -x;
rotation1[5] = -y;
rotation1[8] = 1 - a * (x * x + y * y);
const rotation2 = Matrix3.fromRotationZ(-xys.s, rotation2Scratch);
const matrixQ = Matrix3.multiply(rotation1, rotation2, rotation1Scratch);
// Similar to TT conversions above
// It's possible here that secondTT could roll over 86400
// This does not seem to affect the precision (unit tests check for this)
const dateUt1day = date.dayNumber;
const dateUt1sec =
date.secondsOfDay - JulianDate.computeTaiMinusUtc(date) + eop.ut1MinusUtc;
// Compute Earth rotation angle
// The IERS standard for era is
// era = 0.7790572732640 + 1.00273781191135448 * Tu
// where
// Tu = JulianDateInUt1 - 2451545.0
// However, you get much more precision if you make the following simplification
// era = a + (1 + b) * (JulianDayNumber + FractionOfDay - 2451545)
// era = a + (JulianDayNumber - 2451545) + FractionOfDay + b (JulianDayNumber - 2451545 + FractionOfDay)
// era = a + FractionOfDay + b (JulianDayNumber - 2451545 + FractionOfDay)
// since (JulianDayNumber - 2451545) represents an integer number of revolutions which will be discarded anyway.
const daysSinceJ2000 = dateUt1day - 2451545;
const fractionOfDay = dateUt1sec / TimeConstants.SECONDS_PER_DAY;
let era =
0.779057273264 +
fractionOfDay +
0.00273781191135448 * (daysSinceJ2000 + fractionOfDay);
era = (era % 1.0) * CesiumMath.TWO_PI;
const earthRotation = Matrix3.fromRotationZ(era, rotation2Scratch);
// pseudoFixed to ICRF
const pfToIcrf = Matrix3.multiply(matrixQ, earthRotation, rotation1Scratch);
// Compute pole wander matrix
const cosxp = Math.cos(eop.xPoleWander);
const cosyp = Math.cos(eop.yPoleWander);
const sinxp = Math.sin(eop.xPoleWander);
const sinyp = Math.sin(eop.yPoleWander);
let ttt = dayTT - j2000ttDays + secondTT / TimeConstants.SECONDS_PER_DAY;
ttt /= 36525.0;
// approximate sp value in rad
const sp = (-47.0e-6 * ttt * CesiumMath.RADIANS_PER_DEGREE) / 3600.0;
const cossp = Math.cos(sp);
const sinsp = Math.sin(sp);
const fToPfMtx = rotation2Scratch;
fToPfMtx[0] = cosxp * cossp;
fToPfMtx[1] = cosxp * sinsp;
fToPfMtx[2] = sinxp;
fToPfMtx[3] = -cosyp * sinsp + sinyp * sinxp * cossp;
fToPfMtx[4] = cosyp * cossp + sinyp * sinxp * sinsp;
fToPfMtx[5] = -sinyp * cosxp;
fToPfMtx[6] = -sinyp * sinsp - cosyp * sinxp * cossp;
fToPfMtx[7] = sinyp * cossp - cosyp * sinxp * sinsp;
fToPfMtx[8] = cosyp * cosxp;
return Matrix3.multiply(pfToIcrf, fToPfMtx, result);
};
const pointToWindowCoordinatesTemp = new Cartesian4();
/**
* Transform a point from model coordinates to window coordinates.
*
* @param {Matrix4} modelViewProjectionMatrix The 4x4 model-view-projection matrix.
* @param {Matrix4} viewportTransformation The 4x4 viewport transformation.
* @param {Cartesian3} point The point to transform.
* @param {Cartesian2} [result] The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if none was provided.
*/
Transforms.pointToWindowCoordinates = function (
modelViewProjectionMatrix,
viewportTransformation,
point,
result
) {
result = Transforms.pointToGLWindowCoordinates(
modelViewProjectionMatrix,
viewportTransformation,
point,
result
);
result.y = 2.0 * viewportTransformation[5] - result.y;
return result;
};
/**
* @private
*/
Transforms.pointToGLWindowCoordinates = function (
modelViewProjectionMatrix,
viewportTransformation,
point,
result
) {
//>>includeStart('debug', pragmas.debug);
if (!defined(modelViewProjectionMatrix)) {
throw new DeveloperError("modelViewProjectionMatrix is required.");
}
if (!defined(viewportTransformation)) {
throw new DeveloperError("viewportTransformation is required.");
}
if (!defined(point)) {
throw new DeveloperError("point is required.");
}
//>>includeEnd('debug');
if (!defined(result)) {
result = new Cartesian2();
}
const tmp = pointToWindowCoordinatesTemp;
Matrix4.multiplyByVector(
modelViewProjectionMatrix,
Cartesian4.fromElements(point.x, point.y, point.z, 1, tmp),
tmp
);
Cartesian4.multiplyByScalar(tmp, 1.0 / tmp.w, tmp);
Matrix4.multiplyByVector(viewportTransformation, tmp, tmp);
return Cartesian2.fromCartesian4(tmp, result);
};
const normalScratch = new Cartesian3();
const rightScratch = new Cartesian3();
const upScratch = new Cartesian3();
/**
* Transform a position and velocity to a rotation matrix.
*
* @param {Cartesian3} position The position to transform.
* @param {Cartesian3} velocity The velocity vector to transform.
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
* @param {Matrix3} [result] The object onto which to store the result.
* @returns {Matrix3} The modified result parameter or a new Matrix3 instance if none was provided.
*/
Transforms.rotationMatrixFromPositionVelocity = function (
position,
velocity,
ellipsoid,
result
) {
//>>includeStart('debug', pragmas.debug);
if (!defined(position)) {
throw new DeveloperError("position is required.");
}
if (!defined(velocity)) {
throw new DeveloperError("velocity is required.");
}
//>>includeEnd('debug');
const normal = defaultValue(ellipsoid, Ellipsoid.WGS84).geodeticSurfaceNormal(
position,
normalScratch
);
let right = Cartesian3.cross(velocity, normal, rightScratch);
if (Cartesian3.equalsEpsilon(right, Cartesian3.ZERO, CesiumMath.EPSILON6)) {
right = Cartesian3.clone(Cartesian3.UNIT_X, right);
}
const up = Cartesian3.cross(right, velocity, upScratch);
Cartesian3.normalize(up, up);
Cartesian3.cross(velocity, up, right);
Cartesian3.negate(right, right);
Cartesian3.normalize(right, right);
if (!defined(result)) {
result = new Matrix3();
}
result[0] = velocity.x;
result[1] = velocity.y;
result[2] = velocity.z;
result[3] = right.x;
result[4] = right.y;
result[5] = right.z;
result[6] = up.x;