-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_ntk.py
171 lines (142 loc) · 7.49 KB
/
compute_ntk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import shutil
import os
import numpy as np
import copy
import time
import pickle
import torch
from torchvision import transforms
from torch.utils.data import DataLoader, Subset
from torch.func import functional_call, vmap, jacrev
# import qml
device = 'cuda' if torch.cuda.device_count() > 0 else 'cpu'
# Import custom stuff
from src.datasets import CIFAR10, CIFAR100, FashionMNIST, SVHN
from src.models import disable_running_stats
from src.metrics import Proxy
from src.utils import gather_settings
settings = gather_settings()
DATASET = 'cifar100'
MODEL = 'resnet18'
SEEDS = [2026, 4113, 5977, 7481, 9833]
M_SAMPLES = 50
CHOSEN_METRIC = 'mem'
# Load dataset
if DATASET == 'cifar10':
train_dataset = CIFAR10(root=settings.datasets_folder, train=True, transform=None, download=True)
epochs = [1,5,10,20,50]
lower_indices = np.arange(0, len(train_dataset), int(len(train_dataset)/20))
elif DATASET == 'cifar100':
train_dataset = CIFAR100(root=settings.datasets_folder, train=True, transform=None, download=True)
epochs = [10,40,70,100,150]
lower_indices = [0, 1000, 2500, 5000, 7500, 10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 47500, 49000, 49500]
elif DATASET == 'svhn':
train_dataset = SVHN(root=settings.datasets_folder, train=True, transform=None, download=True)
epochs = [1,5,10,20]
lower_indices = np.arange(0, len(train_dataset), int(len(train_dataset)/20))
def compute_ks(settings, lower_index, epoch):
# Load dataset
print('Loading dataset...')
if settings.dataset == 'cifar10':
normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
test_transform = transforms.Compose([transforms.ToTensor(), normalize])
num_classes = 10
im_channels = 3
im_size = (32, 32)
train_dataset = CIFAR10(root=settings.datasets_folder, train=True, transform=test_transform, download=True)
elif settings.dataset == 'cifar100':
normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
test_transform = transforms.Compose([transforms.ToTensor(), normalize])
num_classes = 100
im_channels = 3
im_size = (32, 32)
train_dataset = CIFAR100(root=settings.datasets_folder, train=True, transform=test_transform, download=True)
elif settings.dataset == 'svhn':
mean = [0.4377, 0.4438, 0.4728]
std = [0.1980, 0.2010, 0.1970]
test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])
num_classes = 10
im_channels = 3
im_size = (32, 32)
train_dataset = SVHN(root=settings.datasets_folder, train=True, transform=test_transform, download=True)
print('Loading model checkpoint...')
models_folder = os.path.join(settings.models_folder, 'standard_{}_over_{}'.format(settings.model, settings.dataset), 'seed_{}'.format(settings.seed))
model = torch.load(os.path.join(models_folder, 'epoch_{}.pt'.format(epoch)), map_location='cpu')
model = model.to(device)
print('Model loaded to device: {}'.format(device))
# Load metric
print('Loading metric...')
sorted_proxy_dict = Proxy(mode=CHOSEN_METRIC, dataset=settings.dataset).get_dict_form(sort=True)
sorted_indices = list(sorted_proxy_dict.keys())
# Copy model
print('Disabling running stats of model...')
model_copy = copy.deepcopy(model)
disable_running_stats(model_copy)
params = {k: v.detach() for k, v in model_copy.named_parameters()}
tot_params = sum([len(j.flatten().squeeze().tolist()) for j in params.values()])
print('Required matrix of shape: ({}x{})'.format(num_classes*M_SAMPLES, tot_params))
def fnet_single(params, x):
return functional_call(model_copy, params, (x.unsqueeze(0),)).squeeze(0)
def compute_jacobian(fnet_single, params, x1):
# Compute J(x1)
jac1 = vmap(jacrev(fnet_single), (None, 0))(params, x1)
jac1 = torch.hstack([j.flatten(2).squeeze() for j in jac1.values()]).cpu()
return jac1
st_time = time.time()
print('Computing K for samples [{}:{}]'.format(lower_index, lower_index+M_SAMPLES))
# Gather samples to compute velocity
indices_to_use = sorted_indices[lower_index: lower_index+M_SAMPLES]
subset = Subset(train_dataset, indices_to_use)
subset_loader = DataLoader(subset, batch_size=1, shuffle=False)
# Iterate over each sample and compute jacobian
psi = torch.empty((M_SAMPLES*num_classes, tot_params))
for batch_ind, (inputs, targets) in enumerate(subset_loader):
print('Sample: {}/{}'.format(batch_ind+1, M_SAMPLES), end='\r')
inputs = inputs.to(device)
jac = compute_jacobian(fnet_single, params, inputs)
psi[batch_ind*num_classes:(batch_ind+1)*num_classes,:] = jac
del jac
k = psi @ psi.t()
del psi
print('Time taken to compute single value of K: {}'.format(time.time() - st_time))
print('Saving velocity for {} over {} at epoch {} with li = {} and m = {}'.format(CHOSEN_METRIC, settings.dataset, epoch, lower_index, M_SAMPLES))
storing_folder = os.path.join(settings.ntk_folder, settings.dataset, settings.model, '{}'.format(CHOSEN_METRIC), 'epoch_{}'.format(epoch), 'seed_{}'.format(settings.seed), 'l_index_{}'.format(lower_index), 'm_{}'.format(M_SAMPLES))
os.makedirs(storing_folder, exist_ok=True)
file_name_ks = os.path.join(storing_folder, 'k.pkl')
with open(file_name_ks, 'wb') as f:
pickle.dump(k, f)
# COMPUTE KS REQUIRED FOR NTK VELOCITY
for seed in SEEDS:
for epoch in epochs:
for li in lower_indices:
compute_ks(settings=settings, lower_index=li, epoch=epoch)
# COMPUTE NTK VELOCITY FROM KS
def frob_prod(a, b):
return np.trace(np.matmul(a.numpy(), b.numpy().transpose()))
# return torch.inner(a, b)
def frob_norm(a):
return np.sqrt(np.trace(np.matmul(a.numpy(), a.numpy().transpose())))
# return np.linalg.norm(a.numpy(), ord='fro')
# return torch.norm(a, p='fro').to_numpy()
for seed in SEEDS:
for epoch in epochs:
print('epoch: {}'.format(epoch))
vs = {li: None for li in lower_indices}
for lower_index in lower_indices:
storing_folder = os.path.join(settings.ntk_folder, settings.dataset, settings.model, '{}'.format(CHOSEN_METRIC), 'epoch_{}'.format(epoch), 'seed_{}'.format(seed), 'l_index_{}'.format(lower_index), 'm_{}'.format(M_SAMPLES))
file_name_ks = os.path.join(storing_folder, 'k.pkl')
with open(file_name_ks, 'rb') as f:
k_li_t = pickle.load(f)
storing_folder = os.path.join(settings.ntk_folder, settings.dataset, settings.model, '{}'.format(CHOSEN_METRIC), 'epoch_{}'.format(epoch+1), 'seed_{}'.format(seed), 'l_index_{}'.format(lower_index), 'm_{}'.format(M_SAMPLES))
file_name_ks = os.path.join(storing_folder, 'k.pkl')
with open(file_name_ks, 'rb') as f:
k_li_tp1 = pickle.load(f)
v = 1 - (frob_prod(k_li_t, k_li_tp1))/(frob_norm(k_li_t)*frob_norm(k_li_tp1))
print('v = {}'.format(v))
vs[lower_index] = v.item()
storing_folder = os.path.join(settings.ntk_folder, settings.dataset, settings.model, '{}'.format(CHOSEN_METRIC), 'epoch_{}'.format(epoch), 'seed_{}'.format(seed))
file_name_ks = os.path.join(storing_folder, 'vs.pkl')
with open(file_name_ks, 'wb') as f:
pickle.dump(vs, f)