-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_sam_sgd.py
208 lines (169 loc) · 8.93 KB
/
compute_sam_sgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
import numpy as np
import torch
from torchvision import transforms
import scipy.stats
import torch.nn.functional as F
# Import custom stuff
from src.datasets import CIFAR10, CIFAR100, FashionMNIST, SVHN
from torch.utils.data import DataLoader, Subset
from src.metrics import Memorization
from src.utils import gather_settings
settings = gather_settings()
mem = Memorization()
device = 'cuda'
def min_max_normalization(data, new_min=0, new_max=1):
"""
Perform min-max normalization on a list of numbers.
:param data: List of numbers to be normalized
:param new_min: Minimum value of the new range
:param new_max: Maximum value of the new range
:return: List of normalized numbers
"""
min_val = min(data)
max_val = max(data)
normalized_data = [new_min + (x - min_val) * (new_max - new_min) / (max_val - min_val) for x in data]
return normalized_data
def spearmanr(normalized_diffs, all_val_indices):
rho, p_value = scipy.stats.spearmanr(normalized_diffs, mem.get(all_val_indices))
print("Spearman's rho:", rho)
print("p-value:", p_value)
return rho
def process_diff(diffs, all_val_indices):
diffs = [element for sublist in diffs for element in sublist]
_, values = zip(*diffs)
diff_sorted = sorted(diffs, key=lambda x: x[1])
indices, _ = zip(*diff_sorted)
mid_ind = len(diff_sorted) // 2
low_diff = indices[:mid_ind]
high_diff = indices[mid_ind:]
combined = list(zip(all_val_indices, mem.get(all_val_indices)))
mem_sorted = sorted(combined, key=lambda x: x[1])
indices, _ = zip(*mem_sorted)
mid_ind = len(mem_sorted) // 2
low_mem = indices[:mid_ind]
high_mem = indices[mid_ind:]
low_diff = set(low_diff)
high_diff = set(high_diff)
low_mem = set(low_mem)
high_mem = set(high_mem)
print('Low Intersection: {}'.format(len(low_diff.intersection(low_mem))))
print('High Intersection: {}'.format(len(high_diff.intersection(high_mem))))
rho = spearmanr(values, all_val_indices)
return rho, values, all_val_indices
def save_file(mode, values, indices):
sorted_values = np.zeros(50000)
# Place each value in the sorted_values array at its corresponding index
for value, index in zip(values, indices):
sorted_values[index] = value
os.makedirs('{}/{}/{}/{}'.format(settings.metrics_folder, settings.dataset, settings.model, settings.seed), exist_ok=True)
# Save the sorted_values array to an NPZ file
if mode == 'loss':
np.savez('{}/{}/{}/{}/nn_loss_diff_score.npz'.format(settings.metrics_folder, settings.dataset, settings.model, settings.seed), sorted_values)
elif mode == 'prob':
np.savez('{}/{}/{}/{}/nn_prob_diff_score.npz'.format(settings.metrics_folder, settings.dataset, settings.model, settings.seed), sorted_values)
loss_spearmans = []
prob_spearmans = []
for fin_epoch in range(settings.epochs,settings.epochs+1):
print('epoch: {}'.format(fin_epoch))
loss_diffs_list = []
prob_diffs_list = []
all_val_indices = []
for split_ind in range(1,11):
sgd_models_folder = os.path.join(settings.models_folder, '{}_over_{}'.format(settings.model, settings.dataset), 'seed_{}'.format(settings.seed), 'sgd', 'epochs_{}'.format(settings.epochs),'coreset_0', 'reweighting_1')
sgd_model = torch.load(os.path.join(sgd_models_folder, '{}wd_last.pt'.format(split_ind)))
sgd_model = sgd_model.to(device)
sam_models_folder = os.path.join(settings.models_folder, '{}_over_{}'.format(settings.model, settings.dataset), 'seed_{}'.format(settings.seed), 'sam', 'rho_0.05', 'epochs_{}'.format(settings.epochs), 'coreset_0', 'reweighting_1')
sam_model= torch.load(os.path.join(sam_models_folder, '{}wd_last.pt'.format(split_ind)))
sam_model = sam_model.to(device)
if settings.dataset == 'cifar10':
normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
test_transform = transforms.Compose([transforms.ToTensor(), normalize])
num_classes = 10
train_dataset = CIFAR10(root=settings.datasets_folder, train=True, transform=test_transform, download=True)
elif settings.dataset == 'cifar100':
normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
test_transform = transforms.Compose([transforms.ToTensor(), normalize])
num_classes = 100
train_dataset = CIFAR100(root=settings.datasets_folder, train=True, transform=test_transform, download=True)
elif settings.dataset == 'fmnist':
mean = [0.2861]
std = [0.3530]
test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])
num_classes = 10
train_dataset = FashionMNIST(root=settings.datasets_folder, train=True, transform=test_transform, download=True)
elif settings.dataset == 'svhn':
mean = [0.4377, 0.4438, 0.4728]
std = [0.1980, 0.2010, 0.1970]
test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])
num_classes = 10
train_dataset = SVHN(root=settings.datasets_folder, train=True, transform=test_transform, download=True)
val_indices = np.loadtxt('{}/{}/{}/{}/val_ind/val{}.txt'.format(settings.datasets_folder, settings.dataset, settings.model, settings.seed, split_ind), dtype=int)
val_indices = val_indices.tolist()
all_val_indices.append(val_indices)
# Create a DataLoader for the validation set
val_dataset = Subset(train_dataset, val_indices)
val_dataloader = DataLoader(val_dataset, batch_size=1, shuffle=False)
criterion = torch.nn.CrossEntropyLoss().to(device)
# Initialize variables to store total loss and number of correct predictions
total_loss = 0.0
total_correct = 0
total_samples = 0
total_loss2 = 0.0
total_correct2 = 0
total_samples2 = 0
prob_diffs= []
loss_diffs= []
for batch_ind, (inputs, targets) in enumerate(val_dataloader):
# Move inputs and targets to the same device as the model if needed
inputs = inputs.to(device)
targets = targets.to(device)
# Forward pass
if settings.dataset in ['fmnist', 'svhn']:
outputs = sgd_model(inputs)
outputs_sam = sam_model(inputs)
else:
outputs,_ = sgd_model(inputs)
outputs_sam,_ = sam_model(inputs)
prob_sgd = F.softmax(outputs,dim=1)
prob_sam = F.softmax(outputs_sam,dim=1)
prob_diffs.append(torch.abs(prob_sgd - prob_sam).sum().item())
# Calculate the loss
loss = criterion(outputs, targets)
loss_sam = criterion(outputs_sam, targets)
loss = loss.item()
loss_sam = loss_sam.item()
# Update total loss
total_loss += loss
total_loss2 += loss_sam
loss_diffs.append(abs(loss - loss_sam))
# Get the predicted labels
_, predicted = torch.max(outputs, 1)
_, predicted2 = torch.max(outputs_sam, 1)
# Update total number of correct predictions and total samples
total_correct += (predicted == targets).sum().item()
total_samples += targets.size(0)
# Update total number of correct predictions and total samples
total_correct2 += (predicted2 == targets).sum().item()
total_samples2 += targets.size(0)
# Calculate average loss and accuracy
average_loss = total_loss / len(val_dataloader)
accuracy = total_correct / total_samples
# Calculate average loss and accuracy
average_loss2 = total_loss2 / len(val_dataloader)
accuracy2 = total_correct2 / total_samples2
loss_diffs_list.append(list(zip(val_indices, loss_diffs)))
prob_diffs_list.append(list(zip(val_indices, prob_diffs)))
print(f'SGD Validation Loss: {average_loss:.4f}, Validation Accuracy: {accuracy * 100:.2f}%')
print(f'SAM Validation Loss: {average_loss2:.4f}, Validation Accuracy: {accuracy2 * 100:.2f}%')
all_val_indices = [element for sublist in all_val_indices for element in sublist]
print('Statistics using absolute loss difference')
normalized_loss_diffs, values, indices = process_diff(loss_diffs_list, all_val_indices)
save_file('loss', values, indices)
loss_spearmans.append(normalized_loss_diffs)
print('\n\nStatistics using mean absolute prediction vector difference')
normalized_prob_diffs, values, indices = process_diff(prob_diffs_list, all_val_indices)
save_file('prob', values, indices)
prob_spearmans.append(normalized_prob_diffs)