-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotting.py
204 lines (177 loc) · 5.5 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_pickle("results/results_all_methods_sparse.pkl")
df.drop(["Number of Wells", "Number of Sites"], axis=1, inplace=True)
ax = df.plot.bar()
ax.set_xlabel(None)
ax.set_ylabel("Execution time / s")
ax.set_xticklabels(
[
f"Size: {grid_size}\n" f"Threshold: {threshold}"
for (grid_size, threshold), _ in df.iterrows()
]
)
ax.set_yscale("log")
plt.xticks(rotation=0)
plt.show()
df = pd.read_pickle("results/results.pkl")
with pd.option_context(
"display.max_rows",
None,
"display.max_columns",
None,
"display.float_format",
"{:.3e}".format,
):
print(df)
df.rename(
columns={
"Number of Sites": "number_of_sites",
"Number of Wells": "number_of_wells",
"Recursive Method": "recursive",
"Stack Method (List)": "stack_list",
"Stack Method (deque)": "stack_deque",
},
inplace=True,
)
df["average_well_size"] = df.apply(
lambda row: row.number_of_sites / row.number_of_wells
if row.number_of_wells != 0
else 0,
axis=1,
)
df["stack_div_recursive"] = df.apply(lambda row: row.stack_list / row.recursive, axis=1)
df["list_div_deque"] = df.apply(lambda row: row.stack_list / row.stack_deque, axis=1)
# Average well size vs Probability
df_well_size = df.drop(
[
"recursive",
"stack_list",
"stack_deque",
"stack_div_recursive",
"list_div_deque",
"number_of_sites",
"number_of_wells",
],
axis=1,
)
ax = df_well_size.unstack(level=0).plot()
ax.set_xlabel("Probability threshold")
ax.set_ylabel("Average well size")
ax.legend([10, 50, 100, 500, 1000, 5000, 10000], title="Grid size", fancybox=True)
plt.show()
# Different Methods
df_recursive_vs_stack = df.drop(
[
"number_of_sites",
"number_of_wells",
"average_well_size",
"stack_div_recursive",
"list_div_deque",
],
axis=1,
)
# Recursive vs Stack
df_recursive_vs_stack = df.drop(
[
"number_of_sites",
"number_of_wells",
"average_well_size",
"stack_div_recursive",
"list_div_deque",
],
axis=1,
)
columns = ["recursive", "stack_list"]
df_recursive_vs_stack_size_high = df_recursive_vs_stack.loc[
pd.IndexSlice[:, 0.99], columns
]
df_recursive_vs_stack_size_low = df_recursive_vs_stack.loc[
pd.IndexSlice[:, 0.7], columns
]
df_recursive_vs_stack_prob_big = df_recursive_vs_stack.loc[
pd.IndexSlice[10000, :], columns
]
df_recursive_vs_stack_prob_small = df_recursive_vs_stack.loc[
pd.IndexSlice[10, :], columns
]
df_recursive_vs_stack_size_high.index = df_recursive_vs_stack_size_high.index.droplevel(
1
)
df_recursive_vs_stack_size_low.index = df_recursive_vs_stack_size_low.index.droplevel(1)
df_recursive_vs_stack_prob_big.index = df_recursive_vs_stack_prob_big.index.droplevel(0)
df_recursive_vs_stack_prob_small.index = (
df_recursive_vs_stack_prob_small.index.droplevel(0)
)
fig, ax = plt.subplots(nrows=1, ncols=2, sharey="all", figsize=(10, 6))
df_recursive_vs_stack_size_high.plot(ax=ax[0], title="Variable grid size")
df_recursive_vs_stack_size_low.plot(ax=ax[0])
ax[0].set_yscale("log")
ax[0].set_ylabel("Execution time / s")
ax[0].legend(
labels=[
"Recusive Method: Threshold = 0.99",
"Stack Method: Threshold = 0.99",
"Recusive Method: Threshold = 0.7",
"Stack Method: Threshold = 0.7",
]
)
df_recursive_vs_stack_prob_big.plot(ax=ax[1], title="Variable probability threshold")
df_recursive_vs_stack_prob_small.plot(ax=ax[1])
ax[1].legend(
labels=[
"Recusive Method: Grid Size = 10,000",
"Stack Method: Grid Size = 10,000",
"Recusive Method: Grid Size = 10",
"Stack Method: Grid Size = 10",
]
)
plt.show()
# List vs Deque
df_list_vs_deque = df.drop(
[
"number_of_sites",
"number_of_wells",
"average_well_size",
"stack_div_recursive",
"list_div_deque",
],
axis=1,
)
columns = ["stack_deque", "stack_list"]
df_list_vs_deque_size_high = df_list_vs_deque.loc[pd.IndexSlice[:, 0.99], columns]
df_list_vs_deque_size_low = df_list_vs_deque.loc[pd.IndexSlice[:, 0.7], columns]
df_list_vs_deque_prob_big = df_list_vs_deque.loc[pd.IndexSlice[10000, :], columns]
df_list_vs_deque_prob_small = df_list_vs_deque.loc[pd.IndexSlice[10, :], columns]
df_list_vs_deque_size_high.index = df_list_vs_deque_size_high.index.droplevel(1)
df_list_vs_deque_size_low.index = df_list_vs_deque_size_low.index.droplevel(1)
df_list_vs_deque_prob_big.index = df_list_vs_deque_prob_big.index.droplevel(0)
df_list_vs_deque_prob_small.index = df_list_vs_deque_prob_small.index.droplevel(0)
_, ax = plt.subplots(nrows=1, ncols=2, sharey="all", figsize=(10, 6))
df_list_vs_deque_size_high.plot(
ax=ax[0], title="Dependence of grid size on execution time"
)
df_list_vs_deque_size_low.plot(ax=ax[0])
ax[0].set_yscale("log")
ax[0].set_ylabel("Execution time / s")
ax[0].legend(
labels=[
"Deque Implementation: Threshold = 0.99",
"List Implementation: Threshold = 0.99",
"Deque Implementation: Threshold = 0.7",
"List Implementation: Threshold = 0.7",
]
)
df_list_vs_deque_prob_big.plot(
ax=ax[1], title="Dependence of probability threshold on execution time"
)
df_list_vs_deque_prob_small.plot(ax=ax[1])
ax[1].legend(
labels=[
"Deque Implementation: Grid Size = 10,000",
"List Implementation: Grid Size = 10,000",
"Deque Implementation: Grid Size = 10",
"List Implementation: Grid Size = 10",
]
)
plt.show()