-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSARS_Proj_test_140124.sh
125 lines (100 loc) · 3.47 KB
/
SARS_Proj_test_140124.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
##### 14/01/2024 SARS_Proj_test #####
# 1. linux: using MAFFT to align
# Environmental setting
# /home/angel
# data
# SARS_project_test
# raw_fasta
# patient_sequence.fasta
# ref_sequence.fasta
# SARS_proj_test_140124
# 1. Pairwise/Multiple alignment with MAFFT
# codes
# test: 200, 300, 500, 1000 iterations
mkdir /home/angel/data/SARS_project_test/align
cd /home/angel/data/SARS_project_test/raw_fasta
mafft --localpair --maxiterate 200 --add patient_sequence.fasta ref_sequence.fasta > /home/angel/data/SARS_project_test/align/output_it_200.aln
mafft --localpair --maxiterate 300 --add patient_sequence.fasta ref_sequence.fasta > /home/angel/data/SARS_project_test/align/output_it_300.aln
mafft --localpair --maxiterate 500 --add patient_sequence.fasta ref_sequence.fasta > /home/angel/data/SARS_project_test/align/output_it_500.aln
mafft --localpair --maxiterate 1000 --add patient_sequence.fasta ref_sequence.fasta > /home/angel/data/SARS_project_test/align/output_it_1000.aln
# export
scp -r angel@hpc02.sbms.hku.hk:/home/angel/data/SARS_project_test/align /Users/onkiwong/Downloads
# 2. Biopython for downstream analysis
# jupyter notebook
# Environmental setting
conda install anaconda::biopython
conda info --env
print(os.getcwd())
for f in os.listdir("/Users/onkiwong/Desktop/Year_3/common_core_transdisciplinary_project/exploratory_test/data/align"):
print(f)
# Packages
import os
import Bio
# Analysis
from Bio import AlignIO
file_list = ['output_it_200.aln','output_it_300.aln','output_it_500.aln','output_it_1000.aln']
for f in file_list:
align = AlignIO.read(f, "fasta")
print(align)
# Compare differences in genome sequences
from Bio import SeqIO
def seq_info(seq):
print("ID: ", seq.id)
print("Length: ", len(seq))
sequence = seq.seq
print()
return sequence
def search_gap(sequence):
gap = 0
pos_gap = []
for pos, nt in enumerate(sequence):
if nt == '-':
gap += 1
pos_gap.append(pos)
return gap, pos_gap
def SNP(seq_list):
length = len(seq_list[0])
pos_diff = []
for pos in range(length):
nt_pos = [s[pos] for s in seq_list]
if all(nt == nt_pos[0] for nt in nt_pos):
continue
else:
pos_diff.append(pos)
return len(pos_diff)
seq_list = []
align_200 = SeqIO.parse('output_it_200.aln', 'fasta')
for seq in align_200:
sequence = seq_info(seq)
seq_list.append(sequence)
print(f'gap(count, position): {search_gap(sequence)}')
print()
print(f'single nucleotide differences in genome (including gap): {SNP(seq_list)}')
print()
# Translate to amino acid sequence
from Bio import SeqIO
from Bio.Seq import Seq
align_200 = list(SeqIO.parse('output_it_200.aln', 'fasta'))
AA_seq_list = []
def seq_info(seq):
print("ID: ", seq.id)
print("Length: ", len(seq))
sequence = Seq(str(seq.seq))
AA_seq = sequence.ungap('-').translate()
print(AA_seq)
return sequence, AA_seq
def AA_diff(AA_seq_list):
length = min(len(seq) for seq in AA_seq_list)
pos_diff = []
for pos in range(length):
aa_pos = [s[pos] for s in AA_seq_list]
if all(aa == aa_pos[0] for aa in aa_pos):
continue
else:
pos_diff.append(pos)
return len(pos_diff)
for seq in align_200:
sequence, AA_seq = seq_info(seq)
AA_seq_list.append(AA_seq)
print()
print(f'AA sequence differences: {AA_diff(AA_seq_list)}')