-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathvideo_reader.py
343 lines (285 loc) · 12.7 KB
/
video_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import torch
from torchvision import datasets, transforms
from PIL import Image
import os
import zipfile
import io
import numpy as np
import random
import re
import pickle
from glob import glob
from videotransforms.video_transforms import Compose, Resize, RandomCrop, RandomRotation, ColorJitter, RandomHorizontalFlip, CenterCrop, TenCrop
from videotransforms.volume_transforms import ClipToTensor
"""Contains video frame paths and ground truth labels for a single split (e.g. train videos). """
class Split():
def __init__(self):
self.gt_a_list = []
self.videos = []
def add_vid(self, paths, gt_a):
self.videos.append(paths)
self.gt_a_list.append(gt_a)
def get_rand_vid(self, label, idx=-1):
match_idxs = []
for i in range(len(self.gt_a_list)):
if label == self.gt_a_list[i]:
match_idxs.append(i)
if idx != -1:
return self.videos[match_idxs[idx]], match_idxs[idx]
random_idx = np.random.choice(match_idxs)
return self.videos[random_idx], random_idx
def get_num_videos_for_class(self, label):
return len([gt for gt in self.gt_a_list if gt == label])
def get_unique_classes(self):
return list(set(self.gt_a_list))
def get_max_video_len(self):
max_len = 0
for v in self.videos:
l = len(v)
if l > max_len:
max_len = l
return max_len
def __len__(self):
return len(self.gt_a_list)
"""Dataset for few-shot videos, which returns few-shot tasks. """
class VideoDataset(torch.utils.data.Dataset):
def __init__(self, args):
self.args = args
self.get_item_counter = 0
self.data_dir = args.path
self.seq_len = args.seq_len
self.train = True
self.tensor_transform = transforms.ToTensor()
self.img_size = args.img_size
self.annotation_path = args.traintestlist
self.way=args.way
self.shot=args.shot
self.query_per_class=args.query_per_class
self.train_split = Split()
self.test_split = Split()
self.setup_transforms()
self._select_fold()
self.read_dir()
"""Setup crop sizes/flips for augmentation during training and centre crop for testing"""
def setup_transforms(self):
video_transform_list = []
video_test_list = []
if self.img_size == 84:
video_transform_list.append(Resize(96))
video_test_list.append(Resize(96))
elif self.img_size == 224:
video_transform_list.append(Resize(256))
video_test_list.append(Resize(256))
else:
print("img size transforms not setup")
exit(1)
video_transform_list.append(RandomHorizontalFlip())
video_transform_list.append(RandomCrop(self.img_size))
video_test_list.append(CenterCrop(self.img_size))
self.transform = {}
self.transform["train"] = Compose(video_transform_list)
self.transform["test"] = Compose(video_test_list)
"""Loads all videos into RAM from an uncompressed zip. Necessary as the filesystem has a large block size, which is unsuitable for lots of images. """
"""Contains some legacy code for loading images directly, but this has not been used/tested for a while so might not work with the current codebase. """
def read_dir(self):
# load zipfile into memory
if self.data_dir.endswith('.zip'):
self.zip = True
zip_fn = os.path.join(self.data_dir)
self.mem = open(zip_fn, 'rb').read()
self.zfile = zipfile.ZipFile(io.BytesIO(self.mem))
else:
self.zip = False
# go through zip and populate splits with frame locations and action groundtruths
if self.zip:
# When using 'png' based datasets like kinetics, replace 'jpg' to 'png'
dir_list = list(set([x for x in self.zfile.namelist() if '.jpg' not in x]))
class_folders = list(set([x.split(os.sep)[-3] for x in dir_list if len(x.split(os.sep)) > 2]))
class_folders.sort()
self.class_folders = class_folders
video_folders = list(set([x.split(os.sep)[-2] for x in dir_list if len(x.split(os.sep)) > 3]))
video_folders.sort()
self.video_folders = video_folders
class_folders_indexes = {v: k for k, v in enumerate(self.class_folders)}
video_folders_indexes = {v: k for k, v in enumerate(self.video_folders)}
img_list = [x for x in self.zfile.namelist() if '.jpg' in x]
img_list.sort()
c = self.get_train_or_test_db(video_folders[0])
last_video_folder = None
last_video_class = -1
insert_frames = []
for img_path in img_list:
class_folder, video_folder, jpg = img_path.split(os.sep)[-3:]
if video_folder != last_video_folder:
if len(insert_frames) >= self.seq_len:
c = self.get_train_or_test_db(last_video_folder.lower())
if c != None:
c.add_vid(insert_frames, last_video_class)
else:
pass
insert_frames = []
class_id = class_folders_indexes[class_folder]
vid_id = video_folders_indexes[video_folder]
insert_frames.append(img_path)
last_video_folder = video_folder
last_video_class = class_id
c = self.get_train_or_test_db(last_video_folder)
if c != None and len(insert_frames) >= self.seq_len:
c.add_vid(insert_frames, last_video_class)
else:
class_folders = os.listdir(self.data_dir)
class_folders.sort()
self.class_folders = class_folders
for class_folder in class_folders:
video_folders = os.listdir(os.path.join(self.data_dir, class_folder))
video_folders.sort()
if self.args.debug_loader:
video_folders = video_folders[0:1]
for video_folder in video_folders:
c = self.get_train_or_test_db(video_folder)
if c == None:
continue
imgs = os.listdir(os.path.join(self.data_dir, class_folder, video_folder))
if len(imgs) < self.seq_len:
continue
imgs.sort()
paths = [os.path.join(self.data_dir, class_folder, video_folder, img) for img in imgs]
paths.sort()
class_id = class_folders.index(class_folder)
c.add_vid(paths, class_id)
print("loaded {}".format(self.data_dir))
print("train: {}, test: {}".format(len(self.train_split), len(self.test_split)))
""" return the current split being used """
def get_train_or_test_db(self, split=None):
if split is None:
get_train_split = self.train
else:
if split in self.train_test_lists["train"]:
get_train_split = True
elif split in self.train_test_lists["test"]:
get_train_split = False
else:
return None
if get_train_split:
return self.train_split
else:
return self.test_split
""" load the paths of all videos in the train and test splits. """
def _select_fold(self):
lists = {}
for name in ["train", "test"]:
fname = "{}list{:02d}.txt".format(name, self.args.split)
f = os.path.join(self.annotation_path, fname)
selected_files = []
with open(f, "r") as fid:
data = fid.readlines()
data = [x.replace(' ', '_').lower() for x in data]
data = [x.strip().split(" ")[0] for x in data]
data = [os.path.splitext(os.path.split(x)[1])[0] for x in data]
# if "kinetics" in self.args.path:
# data = [x[0:11] for x in data]
selected_files.extend(data)
lists[name] = selected_files
self.train_test_lists = lists
""" Set len to large number as we use lots of random tasks. Stopping point controlled in run.py. """
def __len__(self):
c = self.get_train_or_test_db()
return 1000000
return len(c)
""" Get the classes used for the current split """
def get_split_class_list(self):
c = self.get_train_or_test_db()
classes = list(set(c.gt_a_list))
classes.sort()
return classes
"""Loads a single image from a specified path """
def read_single_image(self, path):
if self.zip:
with self.zfile.open(path, 'r') as f:
with Image.open(f) as i:
i.load()
return i
else:
with Image.open(path) as i:
i.load()
return i
"""Gets a single video sequence. Handles sampling if there are more frames than specified. """
def get_seq(self, label, idx=-1):
c = self.get_train_or_test_db()
paths, vid_id = c.get_rand_vid(label, idx)
n_frames = len(paths)
if n_frames == self.args.seq_len:
idxs = [int(f) for f in range(n_frames)]
else:
if self.train:
excess_frames = n_frames - self.seq_len
excess_pad = int(min(5, excess_frames / 2))
if excess_pad < 1:
start = 0
end = n_frames - 1
else:
start = random.randint(0, excess_pad)
end = random.randint(n_frames-1 -excess_pad, n_frames-1)
else:
start = 1
end = n_frames - 2
if end - start < self.seq_len:
end = n_frames - 1
start = 0
else:
pass
idx_f = np.linspace(start, end, num=self.seq_len)
idxs = [int(f) for f in idx_f]
if self.seq_len == 1:
idxs = [random.randint(start, end-1)]
imgs = [self.read_single_image(paths[i]) for i in idxs]
if (self.transform is not None):
if self.train:
transform = self.transform["train"]
else:
transform = self.transform["test"]
imgs = [self.tensor_transform(v) for v in transform(imgs)]
imgs = torch.stack(imgs)
return imgs, vid_id
"""returns dict of support and target images and labels"""
def __getitem__(self, index):
#select classes to use for this task
c = self.get_train_or_test_db()
classes = c.get_unique_classes()
batch_classes = random.sample(classes, self.way)
if self.train:
n_queries = self.args.query_per_class
else:
n_queries = self.args.query_per_class_test
support_set = []
support_labels = []
target_set = []
target_labels = []
real_support_labels = []
real_target_labels = []
for bl, bc in enumerate(batch_classes):
#select shots from the chosen classes
n_total = c.get_num_videos_for_class(bc)
idxs = random.sample([i for i in range(n_total)], self.args.shot + n_queries)
for idx in idxs[0:self.args.shot]:
vid, vid_id = self.get_seq(bc, idx)
support_set.append(vid)
support_labels.append(bl)
for idx in idxs[self.args.shot:]:
vid, vid_id = self.get_seq(bc, idx)
target_set.append(vid)
target_labels.append(bl)
real_target_labels.append(bc)
s = list(zip(support_set, support_labels))
random.shuffle(s)
support_set, support_labels = zip(*s)
t = list(zip(target_set, target_labels, real_target_labels))
random.shuffle(t)
target_set, target_labels, real_target_labels = zip(*t)
support_set = torch.cat(support_set)
target_set = torch.cat(target_set)
support_labels = torch.FloatTensor(support_labels)
target_labels = torch.FloatTensor(target_labels)
real_target_labels = torch.FloatTensor(real_target_labels)
batch_classes = torch.FloatTensor(batch_classes)
return {"support_set":support_set, "support_labels":support_labels, "target_set":target_set, "target_labels":target_labels, "real_target_labels":real_target_labels, "batch_class_list": batch_classes}