-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMinimal_Example.py
174 lines (140 loc) · 4.71 KB
/
Minimal_Example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import subprocess
import time
import sys
def make_call_string(arglist):
result_string = ""
for arg in arglist:
result_string += "".join(["--", arg[0], " ", arg[1], " "])
return result_string
root_folder = os.path.dirname(os.path.abspath(__file__))
data_folder = os.path.join(root_folder, "Data")
model_folder = os.path.join(data_folder, "Model_Weights")
test_folder = os.path.join(data_folder, "Minimal_Example")
cropped_folder = os.path.join(test_folder, "Cropped")
street_view_folder = os.path.join(test_folder, "Street_View")
if not os.path.exists(cropped_folder):
os.mkdir(cropped_folder)
# First download the pre-trained weights
download_script = os.path.join(model_folder, "Download_Weights.py")
print("Downloading Pretrained Weights")
start = time.time()
call_string = " ".join(
[
"python",
download_script,
"1aPCwYXFAOmklmNMLMh81Yduw5UrbHqkN",
os.path.join(model_folder, "Houses", "trained_weights_final.h5"),
]
)
subprocess.call(call_string, shell=True)
call_string = " ".join(
[
"python",
download_script,
"1FbvHzQWCjucXPbTbI4S1MnBLkAi58Mxv",
os.path.join(model_folder, "Openings", "trained_weights_final.h5"),
]
)
subprocess.call(call_string, shell=True)
end = time.time()
print("Downloaded Pretrained Weights in {0:.1f} seconds".format(end - start))
# Now run the housing detector
detector_script = os.path.join(
os.path.dirname(
os.path.abspath(__file__)),
"2_Computer_Vision",
"detector.py")
houses_result_file = os.path.join(test_folder, "Housing_Results.csv")
houses_weights = os.path.join(
model_folder,
"Houses",
"trained_weights_final.h5")
houses_classes = os.path.join(model_folder, "Houses", "data_classes.txt")
anchors = os.path.join(
root_folder,
"2_Computer_Vision",
"src",
"keras_yolo3",
"model_data",
"yolo_anchors.txt",
)
arglist = [
["input_images", street_view_folder],
["classes", houses_classes],
["output", test_folder],
["yolo_model", houses_weights],
["box_file", houses_result_file],
["anchors", anchors],
]
call_string = " ".join(["python", detector_script, make_call_string(arglist)])
print("Detecting Houses by calling \n\n", call_string, "\n")
start = time.time()
subprocess.call(call_string, shell=True)
end = time.time()
print("Detected Houses in {0:.1f} seconds".format(end - start))
# #Next, we crop out the houses
cropping_script = os.path.join(
root_folder,
"2_Computer_Vision",
"Crop_Images.py")
cropping_result_file = os.path.join(test_folder, "Cropping_Results.csv")
arglist = [
["input_file", houses_result_file],
["classes", houses_classes],
["output_folder", cropped_folder],
["output_file", cropping_result_file],
]
call_string = " ".join(["python", cropping_script, make_call_string(arglist)])
print("Cropping Houses by calling \n\n", call_string, "\n")
start = time.time()
subprocess.call(call_string, shell=True)
end = time.time()
print("Cropped Houses in {0:.1f} seconds".format(end - start))
# Next run the opening detector
model_folder = os.path.join(data_folder, "Model_Weights")
opening_weights = os.path.join(
model_folder,
"Openings",
"trained_weights_final.h5")
opening_classes = os.path.join(
model_folder,
"Openings",
"data_all_classes.txt")
detector_script = os.path.join(root_folder, "2_Computer_Vision", "detector.py")
openings_result_file = os.path.join(test_folder, "Opening_Results.csv")
arglist = [
["input_images", cropped_folder],
["classes", opening_classes],
["output", test_folder],
["yolo_model", opening_weights],
["box_file", openings_result_file],
["anchors", anchors],
["postfix", "_opening"],
]
call_string = " ".join(["python", detector_script, make_call_string(arglist)])
print("Detecting Openings by calling \n\n", call_string, "\n")
start = time.time()
subprocess.call(call_string, shell=True)
end = time.time()
print("Detected Openings in {0:.1f} seconds".format(end - start))
# Finally run the classification
classifier_script = os.path.join(
root_folder,
"3_Classification",
"Classifier.py")
level_folder = os.path.join(data_folder, "Level_Detection_Results")
softness_score_file = os.path.join(test_folder, "Softness_Scores.csv")
arglist = [
["output_file", softness_score_file],
["input_file", openings_result_file],
["level_folder", test_folder],
["classes", opening_classes],
]
call_string = " ".join(
["python", classifier_script, make_call_string(arglist)])
print("Calculating Softness Scores by calling \n\n", call_string, "\n")
start = time.time()
subprocess.call(call_string, shell=True)
end = time.time()
print("Calculated Softness Scores in {0:.1f} seconds".format(end - start))