-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathface_detection.py
59 lines (37 loc) · 1.17 KB
/
face_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import scipy as sp
#import grayscale_conversion
import os
import cv2 as cv
import numpy as np
DIR=r'Faces'
people=[]
for i in os.listdir(DIR):
people.append(i)
print(people)
haar_cascade = cv.CascadeClassifier('haar_face.xml')
features=[]
labels=[]
def create_train():
for person in people:
path=os.path.join(DIR,person)
print(path)
label = people.index(person)
for img in os.listdir(path):
img_path=os.path.join(path,img)
img_array=cv.imread(img_path)
gray = cv.cvtColor(img_array,cv.COLOR_BGR2GRAY)
faces_rect = haar_cascade.detectMultiScale(gray,scaleFactor=1.1,minNeighbors=4)
for(x,y,w,h) in faces_rect:
#face region of interest
faces_roi=gray[y:y+h,x:x+w]
features.append(faces_roi)
labels.append(label)
create_train()
print("Training Done")
features = np.array(features,dtype='object')
labels=np.array(labels)
face_recognizer=cv.face.LBPHFaceRecognizer_create()
face_recognizer.train(features,labels)
face_recognizer.save('face_trained.yml')
np.save("features.npy",features)
np.save("labels.npy",labels)