forked from mit-han-lab/nunchaku
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflux_pix2pix_pipeline.py
207 lines (178 loc) · 7.71 KB
/
flux_pix2pix_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from typing import Any, Callable
import torch
import torchvision.utils
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline, FluxPipelineOutput, FluxTransformer2DModel
from einops import rearrange
from peft.tuners import lora
from PIL import Image
from torch import nn
from torchvision.transforms import functional as F
class FluxPix2pixTurboPipeline(FluxPipeline):
def update_alpha(self, alpha: float) -> None:
self._alpha = alpha
transformer = self.transformer
for n, p in transformer.named_parameters():
if n in self._tuned_state_dict:
new_data = self._tuned_state_dict[n] * alpha + self._original_state_dict[n] * (1 - alpha)
new_data = new_data.to(self._execution_device).to(p.dtype)
p.data.copy_(new_data)
if self.precision == "bf16":
for m in transformer.modules():
if isinstance(m, lora.LoraLayer):
m.scaling["default_0"] = alpha
else:
assert self.precision == "int4"
transformer.set_lora_strength(alpha)
def load_control_module(
self,
pretrained_model_name_or_path: str,
weight_name: str | None = None,
svdq_lora_path: str | None = None,
alpha: float = 1,
):
state_dict, alphas = self.lora_state_dict(
pretrained_model_name_or_path, weight_name=weight_name, return_alphas=True
)
transformer = self.transformer
original_state_dict = {}
tuned_state_dict = {}
assert isinstance(transformer, FluxTransformer2DModel)
for n, p in transformer.named_parameters():
if f"transformer.{n}" in state_dict:
original_state_dict[n] = p.data.cpu()
tuned_state_dict[n] = state_dict[f"transformer.{n}"].cpu()
self._original_state_dict = original_state_dict
self._tuned_state_dict = tuned_state_dict
if self.precision == "bf16":
self.load_lora_into_transformer(state_dict, {}, transformer=transformer)
else:
assert svdq_lora_path is not None
self.transformer.update_lora_params(svdq_lora_path)
self.update_alpha(alpha)
@torch.no_grad()
def __call__(
self,
image: str or Image,
image_type: str = "sketch",
alpha: float = 1.0,
prompt: str | None = None,
prompt_2: str | None = None,
height: int | None = 1024,
width: int | None = 1024,
timesteps: list[int] = None,
generator: torch.Generator | None = None,
prompt_embeds: torch.FloatTensor | None = None,
pooled_prompt_embeds: torch.FloatTensor | None = None,
output_type: str | None = "pil",
return_dict: bool = True,
joint_attention_kwargs: dict[str, Any] | None = None,
callback_on_step_end: Callable[[int, int, dict], None] | None = None,
callback_on_step_end_tensor_inputs: list[str] = ["latents"],
max_sequence_length: int = 512,
):
if alpha != self._alpha:
self.update_alpha(alpha)
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
guidance_scale = 0
num_images_per_prompt = 1
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
# 2. Define call parameters
batch_size = 1
device = self._execution_device
lora_scale = self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
(
prompt_embeds,
pooled_prompt_embeds,
text_ids,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
if isinstance(image, str):
image = Image.open(image).convert("RGB").resize((width, height), Image.LANCZOS)
else:
image = image.resize((width, height), Image.LANCZOS)
image_t = F.to_tensor(image) < 0.5
image_t = image_t.unsqueeze(0).to(self.dtype).to(device)
kernel_size = 4
if hasattr(self, "erosion_kernel"):
erosion_kernel = self.erosion_kernel
else:
erosion_kernel = torch.ones(1, 1, kernel_size, kernel_size, dtype=self.dtype, device=device)
self.erosion_kernel = erosion_kernel
image_t = nn.functional.conv2d(image_t[:, :1], erosion_kernel, padding=kernel_size // 2) > kernel_size**2 - 0.1
image_t = torch.concat([image_t, image_t, image_t], dim=1).to(self.dtype)
image_t = (image_t - 0.5) * 2
# 4. Prepare latent variables
encoded_image = self.vae.encode(image_t, return_dict=False)[0].sample(generator=generator)
encoded_image = (encoded_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
if generator is None:
z = torch.randn_like(encoded_image)
else:
z = torch.randn(
encoded_image.shape, device=generator.device, dtype=encoded_image.dtype, generator=generator
).to(device)
noisy_latent = z * (1 - alpha) + encoded_image * alpha
noisy_latent = rearrange(noisy_latent, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
num_channels_latents = self.transformer.config.in_channels // 4
_, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents=None,
)
# 5. Denoising
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
t = torch.full((batch_size,), 1.0, dtype=self.dtype, device=device)
# handle guidance
if self.transformer.config.guidance_embeds:
guidance = torch.tensor([guidance_scale], device=device)
guidance = guidance.expand(noisy_latent.shape[0])
else:
guidance = None
pred = self.transformer(
hidden_states=noisy_latent,
timestep=t,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
encoded_output = noisy_latent - pred
if output_type == "latent":
image = encoded_output
else:
encoded_output = self._unpack_latents(encoded_output, height, width, self.vae_scale_factor)
encoded_output = (encoded_output / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(encoded_output, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
if not return_dict:
return (image,)
return FluxPipelineOutput(images=image)