forked from mit-han-lab/nunchaku
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_gradio.py
240 lines (210 loc) · 9.4 KB
/
run_gradio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Changed from https://github.com/GaParmar/img2img-turbo/blob/main/gradio_sketch2image.py
import os
import random
import tempfile
import time
from datetime import datetime
import GPUtil
import numpy as np
import torch
from PIL import Image
from flux_pix2pix_pipeline import FluxPix2pixTurboPipeline
from nunchaku.models.safety_checker import SafetyChecker
from nunchaku.models.transformer_flux import NunchakuFluxTransformer2dModel
from utils import get_args
from vars import DEFAULT_SKETCH_GUIDANCE, DEFAULT_STYLE_NAME, MAX_SEED, STYLE_NAMES, STYLES
# import gradio last to avoid conflicts with other imports
import gradio as gr
blank_image = Image.new("RGB", (1024, 1024), (255, 255, 255))
args = get_args()
if args.precision == "bf16":
pipeline = FluxPix2pixTurboPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
pipeline = pipeline.to("cuda")
pipeline.precision = "bf16"
pipeline.load_control_module(
"mit-han-lab/svdq-flux.1-schnell-pix2pix-turbo", "sketch.safetensors", alpha=DEFAULT_SKETCH_GUIDANCE
)
else:
assert args.precision == "int4"
pipeline_init_kwargs = {}
transformer = NunchakuFluxTransformer2dModel.from_pretrained("mit-han-lab/svdq-int4-flux.1-schnell")
pipeline_init_kwargs["transformer"] = transformer
if args.use_qencoder:
from nunchaku.models.text_encoder import NunchakuT5EncoderModel
text_encoder_2 = NunchakuT5EncoderModel.from_pretrained("mit-han-lab/svdq-flux.1-t5")
pipeline_init_kwargs["text_encoder_2"] = text_encoder_2
pipeline = FluxPix2pixTurboPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, **pipeline_init_kwargs
)
pipeline = pipeline.to("cuda")
pipeline.precision = "int4"
pipeline.load_control_module(
"mit-han-lab/svdq-flux.1-schnell-pix2pix-turbo",
"sketch.safetensors",
svdq_lora_path="mit-han-lab/svdq-flux.1-schnell-pix2pix-turbo/svdq-int4-sketch.safetensors",
alpha=DEFAULT_SKETCH_GUIDANCE,
)
safety_checker = SafetyChecker("cuda", disabled=args.no_safety_checker)
def save_image(img):
if isinstance(img, dict):
img = img["composite"]
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
img.save(temp_file.name)
return temp_file.name
def run(image, prompt: str, prompt_template: str, sketch_guidance: float, seed: int) -> tuple[Image, str]:
print(f"Prompt: {prompt}")
image_numpy = np.array(image["composite"].convert("RGB"))
if prompt.strip() == "" and (np.sum(image_numpy == 255) >= 3145628 or np.sum(image_numpy == 0) >= 3145628):
return blank_image, "Please input the prompt or draw something."
is_unsafe_prompt = False
if not safety_checker(prompt):
is_unsafe_prompt = True
prompt = "A peaceful world."
prompt = prompt_template.format(prompt=prompt)
start_time = time.time()
result_image = pipeline(
image=image["composite"],
image_type="sketch",
alpha=sketch_guidance,
prompt=prompt,
generator=torch.Generator().manual_seed(seed),
).images[0]
latency = time.time() - start_time
if latency < 1:
latency = latency * 1000
latency_str = f"{latency:.2f}ms"
else:
latency_str = f"{latency:.2f}s"
if is_unsafe_prompt:
latency_str += " (Unsafe prompt detected)"
torch.cuda.empty_cache()
if args.count_use:
if os.path.exists("use_count.txt"):
with open("use_count.txt", "r") as f:
count = int(f.read())
else:
count = 0
count += 1
current_time = datetime.now()
print(f"{current_time}: {count}")
with open("use_count.txt", "w") as f:
f.write(str(count))
with open("use_record.txt", "a") as f:
f.write(f"{current_time}: {count}\n")
return result_image, latency_str
with gr.Blocks(css_paths="assets/style.css", title=f"SVDQuant Sketch-to-Image Demo") as demo:
with open("assets/description.html", "r") as f:
DESCRIPTION = f.read()
gpus = GPUtil.getGPUs()
if len(gpus) > 0:
gpu = gpus[0]
memory = gpu.memoryTotal / 1024
device_info = f"Running on {gpu.name} with {memory:.0f} GiB memory."
else:
device_info = "Running on CPU 🥶 This demo does not work on CPU."
notice = f'<strong>Notice:</strong> We will replace unsafe prompts with a default prompt: "A peaceful world."'
def get_header_str():
if args.count_use:
if os.path.exists("use_count.txt"):
with open("use_count.txt", "r") as f:
count = int(f.read())
else:
count = 0
count_info = (
f"<div style='display: flex; justify-content: center; align-items: center; text-align: center;'>"
f"<span style='font-size: 18px; font-weight: bold;'>Total inference runs: </span>"
f"<span style='font-size: 18px; color:red; font-weight: bold;'> {count}</span></div>"
)
else:
count_info = ""
header_str = DESCRIPTION.format(device_info=device_info, notice=notice, count_info=count_info)
return header_str
header = gr.HTML(get_header_str())
demo.load(fn=get_header_str, outputs=header)
with gr.Row(elem_id="main_row"):
with gr.Column(elem_id="column_input"):
gr.Markdown("## INPUT", elem_id="input_header")
with gr.Group():
canvas = gr.Sketchpad(
value=blank_image,
height=640,
image_mode="RGB",
sources=["upload", "clipboard"],
type="pil",
label="Sketch",
show_label=False,
show_download_button=True,
interactive=True,
transforms=[],
canvas_size=(1024, 1024),
scale=1,
brush=gr.Brush(default_size=3, colors=["#000000"], color_mode="fixed"),
format="png",
layers=False,
)
with gr.Row():
prompt = gr.Text(label="Prompt", placeholder="Enter your prompt", scale=6)
run_button = gr.Button("Run", scale=1, elem_id="run_button")
download_sketch = gr.DownloadButton("Download Sketch", scale=1, elem_id="download_sketch")
with gr.Row():
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, scale=1)
prompt_template = gr.Textbox(
label="Prompt Style Template", value=STYLES[DEFAULT_STYLE_NAME], scale=2, max_lines=1
)
with gr.Row():
sketch_guidance = gr.Slider(
label="Sketch Guidance",
show_label=True,
minimum=0,
maximum=1,
value=DEFAULT_SKETCH_GUIDANCE,
step=0.01,
scale=5,
)
with gr.Row():
seed = gr.Slider(label="Seed", show_label=True, minimum=0, maximum=MAX_SEED, value=233, step=1, scale=4)
randomize_seed = gr.Button("Random Seed", scale=1, min_width=50, elem_id="random_seed")
with gr.Column(elem_id="column_output"):
gr.Markdown("## OUTPUT", elem_id="output_header")
with gr.Group():
result = gr.Image(
format="png",
height=640,
image_mode="RGB",
type="pil",
label="Result",
show_label=False,
show_download_button=True,
interactive=False,
elem_id="output_image",
)
latency_result = gr.Text(label="Inference Latency", show_label=True)
download_result = gr.DownloadButton("Download Result", elem_id="download_result")
gr.Markdown("### Instructions")
gr.Markdown("**1**. Enter a text prompt (e.g. a cat)")
gr.Markdown("**2**. Start sketching")
gr.Markdown("**3**. Change the image style using a style template")
gr.Markdown("**4**. Adjust the effect of sketch guidance using the slider (typically between 0.2 and 0.4)")
gr.Markdown("**5**. Try different seeds to generate different results")
run_inputs = [canvas, prompt, prompt_template, sketch_guidance, seed]
run_outputs = [result, latency_result]
randomize_seed.click(
lambda: random.randint(0, MAX_SEED),
inputs=[],
outputs=seed,
api_name=False,
queue=False,
).then(run, inputs=run_inputs, outputs=run_outputs, api_name=False)
style.change(lambda x: STYLES[x], inputs=[style], outputs=[prompt_template], api_name=False, queue=False)
gr.on(
triggers=[prompt.submit, run_button.click, canvas.change],
fn=run,
inputs=run_inputs,
outputs=run_outputs,
api_name=False,
)
download_sketch.click(fn=save_image, inputs=canvas, outputs=download_sketch)
download_result.click(fn=save_image, inputs=result, outputs=download_result)
gr.Markdown("MIT Accessibility: https://accessibility.mit.edu/", elem_id="accessibility")
if __name__ == "__main__":
demo.queue().launch(debug=True, share=True, root_path=args.gradio_root_path)