forked from mit-han-lab/nunchaku
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_gradio.py
284 lines (253 loc) · 11 KB
/
run_gradio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# Changed from https://huggingface.co/spaces/playgroundai/playground-v2.5/blob/main/app.py
import argparse
import os
import random
import time
from datetime import datetime
import GPUtil
import spaces
import torch
from peft.tuners import lora
from nunchaku.models.safety_checker import SafetyChecker
from utils import get_pipeline
from vars import DEFAULT_HEIGHT, DEFAULT_WIDTH, EXAMPLES, MAX_SEED, PROMPT_TEMPLATES, SVDQ_LORA_PATHS
# import gradio last to avoid conflicts with other imports
import gradio as gr
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument(
"-m", "--model", type=str, default="schnell", choices=["schnell", "dev"], help="Which FLUX.1 model to use"
)
parser.add_argument(
"-p",
"--precisions",
type=str,
default=["int4"],
nargs="*",
choices=["int4", "fp4", "bf16"],
help="Which precisions to use",
)
parser.add_argument("--use-qencoder", action="store_true", help="Whether to use 4-bit text encoder")
parser.add_argument("--no-safety-checker", action="store_true", help="Disable safety checker")
parser.add_argument("--count-use", action="store_true", help="Whether to count the number of uses")
parser.add_argument("--gradio-root-path", type=str, default="")
return parser.parse_args()
args = get_args()
pipeline_init_kwargs = {}
pipelines = []
for i, precision in enumerate(args.precisions):
pipeline = get_pipeline(
model_name=args.model,
precision=precision,
use_qencoder=args.use_qencoder,
device="cuda",
lora_name="All",
pipeline_init_kwargs={**pipeline_init_kwargs},
)
pipeline.cur_lora_name = "None"
pipeline.cur_lora_weight = 0
pipelines.append(pipeline)
if i == 0:
pipeline_init_kwargs["vae"] = pipeline.vae
pipeline_init_kwargs["text_encoder"] = pipeline.text_encoder
pipeline_init_kwargs["text_encoder_2"] = pipeline.text_encoder_2
safety_checker = SafetyChecker("cuda", disabled=args.no_safety_checker)
@spaces.GPU(enable_queue=True)
def generate(
prompt: str = None,
height: int = 1024,
width: int = 1024,
num_inference_steps: int = 4,
guidance_scale: float = 0,
lora_name: str = "None",
lora_weight: float = 1,
seed: int = 0,
):
print(f"Generating image with prompt: {prompt}")
is_unsafe_prompt = False
if not safety_checker(prompt):
is_unsafe_prompt = True
prompt = "A peaceful world."
prompt = PROMPT_TEMPLATES[lora_name].format(prompt=prompt)
images, latency_strs = [], []
for i, pipeline in enumerate(pipelines):
precision = args.precisions[i]
progress = gr.Progress(track_tqdm=True)
if pipeline.cur_lora_name != lora_name:
if precision == "bf16":
for m in pipeline.transformer.modules():
if isinstance(m, lora.LoraLayer):
if pipeline.cur_lora_name != "None":
if pipeline.cur_lora_name in m.scaling:
m.scaling[pipeline.cur_lora_name] = 0
if lora_name != "None":
if lora_name in m.scaling:
m.scaling[lora_name] = lora_weight
else:
assert precision == "int4"
if lora_name != "None":
pipeline.transformer.update_lora_params(SVDQ_LORA_PATHS[lora_name])
pipeline.transformer.set_lora_strength(lora_weight)
else:
pipeline.transformer.set_lora_strength(0)
elif lora_name != "None":
if precision == "bf16":
if pipeline.cur_lora_weight != lora_weight:
for m in pipeline.transformer.modules():
if isinstance(m, lora.LoraLayer):
if lora_name in m.scaling:
m.scaling[lora_name] = lora_weight
else:
assert precision == "int4"
pipeline.transformer.set_lora_strength(lora_weight)
pipeline.cur_lora_name = lora_name
pipeline.cur_lora_weight = lora_weight
start_time = time.time()
image = pipeline(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=torch.Generator().manual_seed(seed),
).images[0]
end_time = time.time()
latency = end_time - start_time
if latency < 1:
latency = latency * 1000
latency_str = f"{latency:.2f}ms"
else:
latency_str = f"{latency:.2f}s"
images.append(image)
latency_strs.append(latency_str)
if is_unsafe_prompt:
for i in range(len(latency_strs)):
latency_strs[i] += " (Unsafe prompt detected)"
torch.cuda.empty_cache()
if args.count_use:
if os.path.exists(f"{args.model}-use_count.txt"):
with open(f"{args.model}-use_count.txt", "r") as f:
count = int(f.read())
else:
count = 0
count += 1
current_time = datetime.now()
print(f"{current_time}: {count}")
with open(f"{args.model}-use_count.txt", "w") as f:
f.write(str(count))
with open(f"{args.model}-use_record.txt", "a") as f:
f.write(f"{current_time}: {count}\n")
return *images, *latency_strs
with open("./assets/description.html", "r") as f:
DESCRIPTION = f.read()
gpus = GPUtil.getGPUs()
if len(gpus) > 0:
gpu = gpus[0]
memory = gpu.memoryTotal / 1024
device_info = f"Running on {gpu.name} with {memory:.0f} GiB memory."
else:
device_info = "Running on CPU 🥶 This demo does not work on CPU."
notice = f'<strong>Notice:</strong> We will replace unsafe prompts with a default prompt: "A peaceful world."'
with gr.Blocks(
css_paths=[f"assets/frame{len(args.precisions)}.css", "assets/common.css"],
title=f"SVDQuant FLUX.1-{args.model} Demo",
) as demo:
def get_header_str():
if args.count_use:
if os.path.exists(f"{args.model}-use_count.txt"):
with open(f"{args.model}-use_count.txt", "r") as f:
count = int(f.read())
else:
count = 0
count_info = (
f"<div style='display: flex; justify-content: center; align-items: center; text-align: center;'>"
f"<span style='font-size: 18px; font-weight: bold;'>Total inference runs: </span>"
f"<span style='font-size: 18px; color:red; font-weight: bold;'> {count}</span></div>"
)
else:
count_info = ""
header_str = DESCRIPTION.format(model=args.model, device_info=device_info, notice=notice, count_info=count_info)
return header_str
header = gr.HTML(get_header_str())
demo.load(fn=get_header_str, outputs=header)
with gr.Row():
image_results, latency_results = [], []
for i, precision in enumerate(args.precisions):
with gr.Column():
gr.Markdown(f"# {precision.upper()}", elem_id="image_header")
with gr.Group():
image_result = gr.Image(
format="png",
image_mode="RGB",
label="Result",
show_label=False,
show_download_button=True,
interactive=False,
)
latency_result = gr.Text(label="Inference Latency", show_label=True)
image_results.append(image_result)
latency_results.append(latency_result)
with gr.Row():
prompt = gr.Text(
label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, scale=4
)
run_button = gr.Button("Run", scale=1)
if args.model == "dev":
with gr.Row():
lora_name = gr.Dropdown(label="LoRA Name", choices=PROMPT_TEMPLATES.keys(), value="None", scale=1)
prompt_template = gr.Textbox(
label="LoRA Prompt Template", value=PROMPT_TEMPLATES["None"], scale=1, max_lines=1
)
else:
lora_name = "None"
with gr.Row():
seed = gr.Slider(label="Seed", show_label=True, minimum=0, maximum=MAX_SEED, value=233, step=1, scale=4)
randomize_seed = gr.Button("Random Seed", scale=1, min_width=50, elem_id="random_seed")
with gr.Accordion("Advanced options", open=False):
with gr.Group():
if args.model == "schnell":
num_inference_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=8, step=1, value=4)
guidance_scale = 0
lora_weight = 0
elif args.model == "dev":
num_inference_steps = gr.Slider(label="Sampling Steps", minimum=10, maximum=50, step=1, value=25)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=10, step=0.1, value=3.5)
lora_weight = gr.Slider(label="LoRA Weight", minimum=0, maximum=2, step=0.1, value=1)
else:
raise NotImplementedError(f"Model {args.model} not implemented")
if args.model == "schnell":
def generate_func(prompt, num_inference_steps, seed):
return generate(
prompt, DEFAULT_HEIGHT, DEFAULT_WIDTH, num_inference_steps, guidance_scale, lora_name, lora_weight, seed
)
input_args = [prompt, num_inference_steps, seed]
elif args.model == "dev":
def generate_func(prompt, num_inference_steps, guidance_scale, lora_name, lora_weight, seed):
return generate(
prompt, DEFAULT_HEIGHT, DEFAULT_WIDTH, num_inference_steps, guidance_scale, lora_name, lora_weight, seed
)
input_args = [prompt, num_inference_steps, guidance_scale, lora_name, lora_weight, seed]
gr.Examples(
examples=EXAMPLES[args.model], inputs=input_args, outputs=[*image_results, *latency_results], fn=generate_func
)
gr.on(
triggers=[prompt.submit, run_button.click],
fn=generate_func,
inputs=input_args,
outputs=[*image_results, *latency_results],
api_name=False,
)
randomize_seed.click(
lambda: random.randint(0, MAX_SEED), inputs=[], outputs=seed, api_name=False, queue=False
).then(fn=generate_func, inputs=input_args, outputs=[*image_results, *latency_results], api_name=False, queue=False)
if args.model == "dev":
lora_name.change(
lambda x: PROMPT_TEMPLATES[x],
inputs=[lora_name],
outputs=[prompt_template],
api_name=False,
queue=False,
)
gr.Markdown("MIT Accessibility: https://accessibility.mit.edu/", elem_id="accessibility")
if __name__ == "__main__":
demo.queue(max_size=20).launch(server_name="0.0.0.0", debug=True, share=True, root_path=args.gradio_root_path)