forked from carlthome/tensorflow-convlstm-cell
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcell.py
135 lines (111 loc) · 4.55 KB
/
cell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import tensorflow as tf
class ConvLSTMCell(tf.nn.rnn_cell.RNNCell):
"""A LSTM cell with convolutions instead of multiplications.
Reference:
Xingjian, S. H. I., et al. "Convolutional LSTM network: A machine learning approach for precipitation nowcasting." Advances in Neural Information Processing Systems. 2015.
"""
def __init__(self, shape, filters, kernel, forget_bias=1.0, activation=tf.tanh, normalize=True, peephole=True, data_format='channels_last', reuse=None):
super(ConvLSTMCell, self).__init__(_reuse=reuse)
self._kernel = kernel
self._filters = filters
self._forget_bias = forget_bias
self._activation = activation
self._normalize = normalize
self._peephole = peephole
if data_format == 'channels_last':
self._size = tf.TensorShape(shape + [self._filters])
self._feature_axis = self._size.ndims
self._data_format = None
elif data_format == 'channels_first':
self._size = tf.TensorShape([self._filters] + shape)
self._feature_axis = 0
self._data_format = 'NC'
else:
raise ValueError('Unknown data_format')
@property
def state_size(self):
return tf.nn.rnn_cell.LSTMStateTuple(self._size, self._size)
@property
def output_size(self):
return self._size
def call(self, x, state):
c, h = state
x = tf.concat([x, h], axis=self._feature_axis)
n = x.shape[-1].value
m = 4 * self._filters if self._filters > 1 else 4
W = tf.get_variable('kernel', self._kernel + [n, m])
y = tf.nn.convolution(x, W, 'SAME', data_format=self._data_format)
if not self._normalize:
y += tf.get_variable('bias', [m], initializer=tf.zeros_initializer())
j, i, f, o = tf.split(y, 4, axis=self._feature_axis)
if self._peephole:
i += tf.get_variable('W_ci', c.shape[1:]) * c
f += tf.get_variable('W_cf', c.shape[1:]) * c
if self._normalize:
j = tf.contrib.layers.layer_norm(j)
i = tf.contrib.layers.layer_norm(i)
f = tf.contrib.layers.layer_norm(f)
f = tf.sigmoid(f + self._forget_bias)
i = tf.sigmoid(i)
c = c * f + i * self._activation(j)
if self._peephole:
o += tf.get_variable('W_co', c.shape[1:]) * c
if self._normalize:
o = tf.contrib.layers.layer_norm(o)
c = tf.contrib.layers.layer_norm(c)
o = tf.sigmoid(o)
h = o * self._activation(c)
state = tf.nn.rnn_cell.LSTMStateTuple(c, h)
return h, state
class ConvGRUCell(tf.nn.rnn_cell.RNNCell):
"""A GRU cell with convolutions instead of multiplications."""
def __init__(self, shape, filters, kernel, activation=tf.tanh, normalize=True, data_format='channels_last', reuse=None):
super(ConvGRUCell, self).__init__(_reuse=reuse)
self._filters = filters
self._kernel = kernel
self._activation = activation
self._normalize = normalize
if data_format == 'channels_last':
self._size = tf.TensorShape(shape + [self._filters])
self._feature_axis = self._size.ndims
self._data_format = None
elif data_format == 'channels_first':
self._size = tf.TensorShape([self._filters] + shape)
self._feature_axis = 0
self._data_format = 'NC'
else:
raise ValueError('Unknown data_format')
@property
def state_size(self):
return self._size
@property
def output_size(self):
return self._size
def call(self, x, h):
channels = x.shape[self._feature_axis].value
with tf.variable_scope('gates'):
inputs = tf.concat([x, h], axis=self._feature_axis)
n = channels + self._filters
m = 2 * self._filters if self._filters > 1 else 2
W = tf.get_variable('kernel', self._kernel + [n, m])
y = tf.nn.convolution(inputs, W, 'SAME', data_format=self._data_format)
if self._normalize:
r, u = tf.split(y, 2, axis=self._feature_axis)
r = tf.contrib.layers.layer_norm(r)
u = tf.contrib.layers.layer_norm(u)
else:
y += tf.get_variable('bias', [m], initializer=tf.ones_initializer())
r, u = tf.split(y, 2, axis=self._feature_axis)
r, u = tf.sigmoid(r), tf.sigmoid(u)
with tf.variable_scope('candidate'):
inputs = tf.concat([x, r * h], axis=self._feature_axis)
n = channels + self._filters
m = self._filters
W = tf.get_variable('kernel', self._kernel + [n, m])
y = tf.nn.convolution(inputs, W, 'SAME', data_format=self._data_format)
if self._normalize:
y = tf.contrib.layers.layer_norm(y)
else:
y += tf.get_variable('bias', [m], initializer=tf.zeros_initializer())
h = u * h + (1 - u) * self._activation(y)
return h, h