forked from MariaNattestad/dot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDotPrep.py
executable file
·440 lines (327 loc) · 14.4 KB
/
DotPrep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
#! /usr/bin/env python
# Author: Maria Nattestad
# Email: maria.nattestad@gmail.com
# This script prepares a nucmer output delta file for visualization in Dot
# Parts of this code is adapted from Assemblytics unique anchor filtering
import argparse
import gzip
import time
import numpy as np
import operator
import re
def run(args):
filename = args.delta
unique_length = args.unique_length
output_filename = args.out
keep_small_uniques = True
max_overview_alignments = args.overview
# Read through the file and store information indexed by Query sequence names
header_lines_by_query, lines_by_query = getQueryRefCombinations(filename)
# Figure out which alignments contain sufficient unique anchor sequences
unique_alignments = calculateUniqueness(header_lines_by_query, lines_by_query, unique_length, keep_small_uniques)
# Write a filtered delta file, and coordinate files with uniqueness tags
reference_lengths, fields_by_query = writeFilteredDeltaFile(filename, output_filename, unique_alignments, unique_length, header_lines_by_query)
index_for_dot(reference_lengths, fields_by_query, output_filename, max_overview_alignments)
def scrub(string):
return string.replace(",","_").replace("!","_").replace("~","_").replace("#", "_")
def getQueryRefCombinations(filename):
print("header from delta file:")
try:
f = gzip.open(filename, 'rt')
print(f.readline().strip())
except:
f = open(filename, 'r')
print(f.readline().strip())
# Ignore the first two lines for now
print(f.readline().strip())
linecounter = 0
current_query_name = ""
current_header = ""
lines_by_query = {}
header_lines_by_query = {}
before = time.time()
for line in f:
if line[0]==">":
linecounter += 1
current_header = line.strip()
current_query_name = scrub(current_header.split()[1])
if header_lines_by_query.get(current_query_name, None) == None:
lines_by_query[current_query_name] = []
header_lines_by_query[current_query_name] = []
else:
fields = line.strip().split()
if len(fields) > 4:
# sometimes start and end are the other way around, but for this they need to be in order
query_min = min([int(fields[2]),int(fields[3])])
query_max = max([int(fields[2]),int(fields[3])])
lines_by_query[current_query_name].append((query_min,query_max))
header_lines_by_query[current_query_name].append(current_header)
f.close()
print("First read through the file: %d seconds for %d query-reference combinations" % (time.time()-before,linecounter))
return (header_lines_by_query, lines_by_query)
def calculateUniqueness(header_lines_by_query, lines_by_query, unique_length, keep_small_uniques):
before = time.time()
unique_alignments = {}
num_queries = len(lines_by_query)
print("Filtering alignments of %d queries" % (num_queries))
num_query_step_to_report = num_queries/100
if num_queries < 100:
num_query_step_to_report = num_queries/10
if num_queries < 10:
num_query_step_to_report = 1
query_counter = 0
for query in lines_by_query:
unique_alignments[query] = summarize_planesweep(lines_by_query[query], unique_length_required = unique_length, keep_small_uniques = keep_small_uniques)
query_counter += 1
if (query_counter % num_query_step_to_report) == 0:
print("Progress: %d%%" % (query_counter*100/num_queries))
print("Progress: 100%")
print("Deciding which alignments to keep: %d seconds for %d queries" % (time.time()-before,num_queries))
return unique_alignments
def summarize_planesweep(lines,unique_length_required, keep_small_uniques=False):
unique_alignments = []
# If no alignments:
if len(lines)==0:
return []
# If only one alignment:
if len(lines) == 1:
if keep_small_uniques == True or abs(lines[0][1] - lines[0][0]) >= unique_length_required:
return [0]
else:
return []
starts_and_stops = []
for query_min,query_max in lines:
starts_and_stops.append((query_min,"start"))
starts_and_stops.append((query_max,"stop"))
sorted_starts_and_stops = sorted(starts_and_stops,key=operator.itemgetter(0))
current_coverage = 0
last_position = -1
sorted_unique_intervals_left = []
sorted_unique_intervals_right = []
for pos,change in sorted_starts_and_stops:
if current_coverage == 1:
sorted_unique_intervals_left.append(last_position)
sorted_unique_intervals_right.append(pos)
if change == "start":
current_coverage += 1
else:
current_coverage -= 1
last_position = pos
linecounter = 0
for query_min,query_max in lines:
i = binary_search(query_min,sorted_unique_intervals_left,0,len(sorted_unique_intervals_left))
exact_match = False
if sorted_unique_intervals_left[i] == query_min and sorted_unique_intervals_right[i] == query_max:
exact_match = True
sum_uniq = 0
while i < len(sorted_unique_intervals_left) and sorted_unique_intervals_left[i] >= query_min and sorted_unique_intervals_right[i] <= query_max:
sum_uniq += sorted_unique_intervals_right[i] - sorted_unique_intervals_left[i]
i += 1
if sum_uniq >= unique_length_required:
unique_alignments.append(linecounter)
elif keep_small_uniques == True and exact_match == True:
unique_alignments.append(linecounter)
linecounter += 1
return unique_alignments
def binary_search(query, numbers, left, right):
# Returns index of the matching element or the first element to the right
if left >= right:
return right
mid = int((right+left)/2)
if query == numbers[mid]:
return mid
elif query < numbers[mid]:
return binary_search(query,numbers,left,mid)
else: # if query > numbers[mid]:
return binary_search(query,numbers,mid+1,right)
def natural_key(string_):
"""See http://www.codinghorror.com/blog/archives/001018.html"""
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_)]
def writeFilteredDeltaFile(filename, output_filename, unique_alignments, unique_length, header_lines_by_query):
before = time.time()
f_out_delta = gzip.open(output_filename + ".uniqueAnchorFiltered_l%d.delta.gz" % (unique_length),'wt')
try:
f = gzip.open(filename, 'rt')
header1 = f.readline()
except:
f = open(filename, 'r')
header1 = f.readline()
f_out_delta.write(header1) # write the first line that we read already
f_out_delta.write(f.readline())
linecounter = 0
# For filtered delta file:
list_of_unique_alignments = []
alignment_counter = {}
keep_printing = False
# For coords:
current_query_name = ""
current_query_position = 0
# For basic assembly stats:
ref_sequences = set()
query_sequences = set()
reference_lengths = []
query_lengths = {}
fields_by_query = {}
for line in f:
linecounter += 1
if line[0]==">":
fields = line.strip().split()
# For delta file output:
query = scrub(fields[1])
list_of_unique_alignments = unique_alignments[query]
header_needed = False
for index in list_of_unique_alignments:
if line.strip() == header_lines_by_query[query][index]:
header_needed = True
if header_needed == True:
f_out_delta.write(line) # if we have any alignments under this header, print(the header)
alignment_counter[query] = alignment_counter.get(query,0)
# For coords:
current_reference_name = scrub(fields[0][1:])
current_query_name = scrub(fields[1])
current_reference_size = int(fields[2])
current_query_size = int(fields[3])
# For index:
if not current_reference_name in ref_sequences:
reference_lengths.append((current_reference_name, current_reference_size))
ref_sequences.add(current_reference_name)
if not current_query_name in query_sequences:
query_lengths[current_query_name] = current_query_size
query_sequences.add(current_query_name)
else:
fields = line.strip().split()
if len(fields) > 4:
# For coords:
ref_start = int(fields[0])
ref_end = int(fields[1])
query_start = int(fields[2])
query_end = int(fields[3])
csv_tag = "repetitive"
if alignment_counter[query] in list_of_unique_alignments:
f_out_delta.write(line)
csv_tag = "unique"
keep_printing = True
else:
keep_printing = False
fields = [ref_start, ref_end, query_start, query_end, current_reference_size, current_query_size, current_reference_name, current_query_name, csv_tag]
if fields_by_query.get(current_query_name, None) == None:
fields_by_query[current_query_name] = []
fields_by_query[current_query_name].append(fields)
alignment_counter[query] = alignment_counter[query] + 1
elif keep_printing == True:
f_out_delta.write(line)
f.close()
f_out_delta.close()
# f_out_coords.close()
print("Writing filtered delta file and capturing information for coords file: %d seconds for %d total lines in file" % (time.time()-before,linecounter))
return reference_lengths, fields_by_query
def index_for_dot(reference_lengths, fields_by_query, output_prefix, max_overview_alignments):
# Find the order of the reference chromosomes
reference_lengths.sort(key=lambda x: natural_key(x[0]))
# Find the cumulative sums
cumulative_sum = 0
ref_chrom_offsets = {}
queries_by_reference = {}
for ref,ref_length in reference_lengths:
ref_chrom_offsets[ref] = cumulative_sum
cumulative_sum += ref_length
queries_by_reference[ref] = set()
# Calculate relative positions of each alignment in this cumulative length, and take the median of these for each query, then sort the queries by those scores
flip_by_query = {}
unique_references_by_query = {} # for index, only unique alignments
all_references_by_query = {} # for index, including repetitive alignments
relative_ref_position_by_query = [] # for ordering
ordered_tags = ["unique", "repetitive"]
f_out_coords = open(output_prefix + ".coords", 'w')
f_out_coords.write("ref_start,ref_end,query_start,query_end,ref\n")
query_byte_positions = {}
query_lengths = {}
all_alignments = []
last_query = ""
for query_name in fields_by_query:
lines = fields_by_query[query_name]
sum_forward = 0
sum_reverse = 0
ref_position_scores = []
unique_references_by_query[query_name] = set()
all_references_by_query[query_name] = set()
for fields in lines:
tag = fields[8]
query_name = fields[7]
query_lengths[query_name] = int(fields[5])
all_references_by_query[query_name].add(ref)
# Only use unique alignments to decide contig orientation
if tag == "unique":
query_stop = int(fields[3])
query_start = int(fields[2])
ref_start = int(fields[0])
ref_stop = int(fields[1])
alignment_length = abs(int(fields[3])-int(fields[2]))
ref = fields[6]
# for index:
unique_references_by_query[query_name].add(ref)
queries_by_reference[ref].add(query_name)
# for ordering:
ref_position_scores.append(ref_chrom_offsets[ref] + (ref_start+ref_stop)/2)
# for orientation:
if query_stop < query_start:
sum_reverse += alignment_length
else:
sum_forward += alignment_length
# orientation:
flip = sum_reverse > sum_forward
flip_by_query[query_name] = "-" if (flip == True) else "+"
for tag in ordered_tags:
query_byte_positions[(last_query, "end")] = f_out_coords.tell()
query_byte_positions[(query_name, tag)] = f_out_coords.tell()
f_out_coords.write("!" + query_name + "!" + tag +"\n")
for fields in lines:
if fields[8] == tag:
if flip == True:
fields[2] = int(fields[5]) - int(fields[2])
fields[3] = int(fields[5]) - int(fields[3])
output_fields = [fields[0], fields[1], fields[2], fields[3], fields[6]]
f_out_coords.write(",".join([str(i) for i in output_fields]) + "\n")
# For alignment overview:
alignment_length = abs(int(fields[3])-int(fields[2]))
all_alignments.append(([fields[0], fields[1], fields[2], fields[3], fields[6], fields[7], fields[8]], alignment_length))
# ordering
if len(ref_position_scores) > 0:
relative_ref_position_by_query.append((query_name,np.median(ref_position_scores)))
else:
relative_ref_position_by_query.append((query_name,0))
last_query = query_name
query_byte_positions[(last_query, "end")] = f_out_coords.tell()
relative_ref_position_by_query.sort(key=lambda x: x[1])
f_out_index = open(output_prefix + ".coords.idx", 'w')
f_out_index.write("#ref\n")
f_out_index.write("ref,ref_length,matching_queries\n")
# reference_lengths is sorted by the reference chromosome name
for ref,ref_length in reference_lengths:
f_out_index.write("%s,%d,%s\n" % (ref,ref_length,"~".join(queries_by_reference[ref])))
f_out_index.write("#query\n")
f_out_index.write("query,query_length,orientation,bytePosition_unique,bytePosition_repetitive,bytePosition_end,unique_matching_refs,matching_refs\n")
# relative_ref_position_by_query is sorted by rel_pos
for query,rel_pos in relative_ref_position_by_query:
f_out_index.write("%s,%d,%s,%d,%d,%d,%s,%s\n" % (query, query_lengths[query], flip_by_query[query], query_byte_positions[(query,"unique")], query_byte_positions[(query,"repetitive")] - query_byte_positions[(query,"unique")], query_byte_positions[(query,"end")] - query_byte_positions[(query,"repetitive")], "~".join(unique_references_by_query[query]), "~".join(all_references_by_query[query])))
f_out_index.write("#overview\n")
f_out_index.write("ref_start,ref_end,query_start,query_end,ref,query,tag\n")
num_overview_alignments = min(max_overview_alignments,len(all_alignments))
if num_overview_alignments < len(all_alignments):
print("Included the longest " + str(max_overview_alignments) + " alignments in the index under #overview (change this with the --overview parameter), out of a total of " + str(len(all_alignments)) + " alignments.")
all_alignments.sort(key=lambda x: -x[1])
overview_alignments = all_alignments[0:num_overview_alignments]
for tup in overview_alignments:
f_out_index.write(",".join([str(i) for i in tup[0]]) + "\n")
f_out_index.close()
def main():
parser=argparse.ArgumentParser(description="Take a delta file, apply Assemblytics unique anchor filtering, and prepare coordinates input files for Dot")
parser.add_argument("--delta",help="delta file" ,dest="delta", type=str, required=True)
parser.add_argument("--out",help="output file" ,dest="out", type=str, default="output")
parser.add_argument("--unique-length",help="The total length of unique sequence an alignment must have on the query side to be retained. Default: 10000" ,dest="unique_length",type=int, default=10000)
parser.add_argument("--overview",help="The number of alignments to include in the coords.idx output file, which will be shown in the overview for Dot. Default: 1000" ,dest="overview",type=int, default=1000)
parser.set_defaults(func=run)
args=parser.parse_args()
args.func(args)
if __name__=="__main__":
main()