-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtest.py
137 lines (116 loc) · 4.95 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import math
import argparse, yaml
import utils
import os
from tqdm import tqdm
import logging
import sys
import time
import importlib
import glob
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import MultiStepLR, StepLR
from datas.utils import create_datasets
parser = argparse.ArgumentParser(description='SPIN')
## yaml configuration files
parser.add_argument('--config', type=str, default=None, help = 'pre-config file for training')
parser.add_argument('--resume', type=str, default=None, help = 'resume training or not')
if __name__ == '__main__':
args = parser.parse_args()
if args.config:
opt = vars(args)
yaml_args = yaml.load(open(args.config), Loader=yaml.FullLoader)
opt.update(yaml_args)
## set visibel gpu
gpu_ids_str = str(args.gpu_ids).replace('[','').replace(']','')
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = '{}'.format(gpu_ids_str)
## select active gpu devices
device = None
if args.gpu_ids is not None and torch.cuda.is_available():
print('use cuda & cudnn for acceleration!')
print('the gpu id is: {}'.format(args.gpu_ids))
device = torch.device('cuda')
torch.backends.cudnn.benchmark = True
else:
print('use cpu for training!')
device = torch.device('cpu')
torch.set_num_threads(args.threads)
## create dataset for training and validating
train_dataloader, valid_dataloaders = create_datasets(args)
## definitions of model
try:
model = utils.import_module('models.{}'.format(args.model)).create_model(args)
except Exception:
raise ValueError('not supported model type! or something')
model = nn.DataParallel(model).to(device)
## resume training
start_epoch = 1
assert args.resume is not None
ckpt_files = glob.glob(os.path.join(args.resume, 'models', "*.pt"))
if len(ckpt_files) != 0:
ckpt_files = sorted(ckpt_files, key=lambda x: int(x.replace('.pt','').split('_')[-1]))
ckpt = torch.load(ckpt_files[-1])
prev_epoch = ckpt['epoch']
start_epoch = prev_epoch + 1
model.load_state_dict(ckpt['model_state_dict'])
stat_dict = ckpt['stat_dict']
print('select {}, resume training from epoch {}.'.format(ckpt_files[-1], start_epoch))
## print architecture of model
time.sleep(3) # sleep 3 seconds
print(model)
epoch = 1
torch.set_grad_enabled(False)
test_log = ''
model = model.eval()
for valid_dataloader in valid_dataloaders:
avg_psnr, avg_ssim = 0.0, 0.0
name = valid_dataloader['name']
loader = valid_dataloader['dataloader']
count = 0
for lr, hr in tqdm(loader, ncols=80):
count += 1
lr, hr = lr.to(device), hr.to(device)
torch.cuda.empty_cache()
sr = model(lr)
# quantize output to [0, 255]
hr = hr.clamp(0, 255)
sr = sr.clamp(0, 255)
out_img = sr.detach()[0].float().cpu().numpy()
out_img = np.transpose(out_img, (1, 2, 0))
output_folder = os.path.join(args.output_folder, str(name))
if not os.path.exists(output_folder):
os.makedirs(output_folder)
output_folder = os.path.join(output_folder, str(count) + '_x' + str(args.upscale) + '.png')
cv2.imwrite(output_folder, out_img[:, :, [2, 1, 0]]) #
# conver to ycbcr
if args.colors == 3:
hr_ycbcr = utils.rgb_to_ycbcr(hr)
sr_ycbcr = utils.rgb_to_ycbcr(sr)
hr = hr_ycbcr[:, 0:1, :, :]
sr = sr_ycbcr[:, 0:1, :, :]
hr = hr[:, :, args.upscale:-args.upscale, args.upscale:-args.upscale]
sr = sr[:, :, args.upscale:-args.upscale, args.upscale:-args.upscale]
psnr = utils.calc_psnr(sr, hr)
ssim = utils.calc_ssim(sr, hr)
avg_psnr += psnr
avg_ssim += ssim
avg_psnr = round(avg_psnr/len(loader) + 5e-3, 2)
avg_ssim = round(avg_ssim/len(loader) + 5e-5, 4)
stat_dict[name]['psnrs'].append(avg_psnr)
stat_dict[name]['ssims'].append(avg_ssim)
if stat_dict[name]['best_psnr']['value'] < avg_psnr:
stat_dict[name]['best_psnr']['value'] = avg_psnr
stat_dict[name]['best_psnr']['epoch'] = epoch
if stat_dict[name]['best_ssim']['value'] < avg_ssim:
stat_dict[name]['best_ssim']['value'] = avg_ssim
stat_dict[name]['best_ssim']['epoch'] = epoch
test_log += '[{}-X{}], PSNR/SSIM: {:.2f}/{:.4f} (Best: {:.2f}/{:.4f}, Epoch: {}/{})\n'.format(
name, args.upscale, float(avg_psnr), float(avg_ssim),
stat_dict[name]['best_psnr']['value'], stat_dict[name]['best_ssim']['value'],
stat_dict[name]['best_psnr']['epoch'], stat_dict[name]['best_ssim']['epoch'])
print(test_log)