-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_pascal_tf_record_test.py
118 lines (104 loc) · 3.86 KB
/
create_pascal_tf_record_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test for create_pascal_tf_record.py."""
import os
import numpy as np
import PIL.Image
import tensorflow as tf
from object_detection import create_pascal_tf_record
class DictToTFExampleTest(tf.test.TestCase):
def _assertProtoEqual(self, proto_field, expectation):
"""Helper function to assert if a proto field equals some value.
Args:
proto_field: The protobuf field to compare.
expectation: The expected value of the protobuf field.
"""
proto_list = [p for p in proto_field]
self.assertListEqual(proto_list, expectation)
def test_dict_to_tf_example(self):
image_file_name = 'tmp_image.jpg'
image_data = np.random.rand(256, 256, 3)
save_path = os.path.join(self.get_temp_dir(), image_file_name)
image = PIL.Image.fromarray(image_data, 'RGB')
image.save(save_path)
data = {
'folder': '',
'filename': image_file_name,
'size': {
'height': 256,
'width': 256,
},
'object': [
{
'difficult': 1,
'bndbox': {
'xmin': 64,
'ymin': 64,
'xmax': 192,
'ymax': 192,
},
'name': 'person',
'truncated': 0,
'pose': '',
},
],
}
label_map_dict = {
'background': 0,
'person': 1,
'notperson': 2,
}
example = create_pascal_tf_record.dict_to_tf_example(
data, self.get_temp_dir(), label_map_dict, image_subdirectory='')
self._assertProtoEqual(
example.features.feature['image/height'].int64_list.value, [256])
self._assertProtoEqual(
example.features.feature['image/width'].int64_list.value, [256])
self._assertProtoEqual(
example.features.feature['image/filename'].bytes_list.value,
[image_file_name])
self._assertProtoEqual(
example.features.feature['image/source_id'].bytes_list.value,
[image_file_name])
self._assertProtoEqual(
example.features.feature['image/format'].bytes_list.value, ['jpeg'])
self._assertProtoEqual(
example.features.feature['image/object/bbox/xmin'].float_list.value,
[0.25])
self._assertProtoEqual(
example.features.feature['image/object/bbox/ymin'].float_list.value,
[0.25])
self._assertProtoEqual(
example.features.feature['image/object/bbox/xmax'].float_list.value,
[0.75])
self._assertProtoEqual(
example.features.feature['image/object/bbox/ymax'].float_list.value,
[0.75])
self._assertProtoEqual(
example.features.feature['image/object/class/text'].bytes_list.value,
['person'])
self._assertProtoEqual(
example.features.feature['image/object/class/label'].int64_list.value,
[1])
self._assertProtoEqual(
example.features.feature['image/object/difficult'].int64_list.value,
[1])
self._assertProtoEqual(
example.features.feature['image/object/truncated'].int64_list.value,
[0])
self._assertProtoEqual(
example.features.feature['image/object/view'].bytes_list.value, [''])
if __name__ == '__main__':
tf.test.main()