-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathollama_with_cross_encoder.py
35 lines (27 loc) · 1.6 KB
/
ollama_with_cross_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import tempfile
from urllib.request import urlretrieve
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core.settings import Settings
from llama_index.embeddings.ollama import OllamaEmbedding
from llama_index.llms.ollama import Ollama
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
from openinference.instrumentation.llama_index import LlamaIndexInstrumentor
endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
LlamaIndexInstrumentor().instrument(tracer_provider=tracer_provider)
Settings.llm = Ollama(model="llama3")
Settings.embed_model = OllamaEmbedding(model_name="mxbai-embed-large")
essay = "https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt"
with tempfile.NamedTemporaryFile() as tf:
urlretrieve(essay, tf.name)
documents = SimpleDirectoryReader(input_files=[tf.name]).load_data()
index = VectorStoreIndex.from_documents(documents)
rerank = SentenceTransformerRerank(model="cross-encoder/ms-marco-MiniLM-L-2-v2", top_n=3)
chat_engine = index.as_chat_engine(similarity_top_k=10, node_postprocessors=[rerank])
if __name__ == "__main__":
response = chat_engine.stream_chat("Which grad schools did the author apply for and why?")
response.print_response_stream()