-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcache_friendly_matrix_mult.cpp
140 lines (112 loc) · 3.37 KB
/
cache_friendly_matrix_mult.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/*
This program demonstrates how different ways of quadratic matrix multiplication
affect performance due to exploiting different temporal and spatial locality
This program is somewhat analogous to some of the exampels from the book "Computer Systems: A Programmer's Perspective"
*/
#include<iostream>
#include<ctime>
int main ()
{
clock_t start1, end1, start2, end2, start3, end3;
const int SIZE = 700;
int n = SIZE;
int i, j, k, sum, temp;
//allocating matrix1
int** matrix1 = new int* [SIZE];
for(i = 0; i < SIZE; i++)
matrix1[i] = new int [SIZE];
//allocating matrix2
int** matrix2 = new int* [SIZE];
for(i = 0; i < SIZE; i++)
matrix2[i] = new int [SIZE];
//allocating matrix3, which is the product matrix
int** matrix3 = new int* [SIZE];
for(i = 0; i < SIZE; i++)
matrix3[i] = new int [SIZE];
//setting the matrices' values
for(i = 0; i < SIZE - 1; i++)
{
for(j = 0; j < SIZE -1; j++)
{
matrix1[i][j] = rand()%10;
matrix2[i][j] = rand()%10;
matrix3[i][j] = 0;
}
}
////////////////////////////////////////////////////////////
//first way of multiplying matrices
start1 = clock();
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
sum = 0;
for (k = 0; k < n; k++)
{
sum += matrix1[i][k]*matrix2[k][j];
}
matrix3[i][j] += sum;
}
}
end1 = clock();
////////////////////////////////////////////////////////////
//resetting matrix3's elements to 0
for(i = 0; i < SIZE; i++)
{
for(j = 0; j < SIZE; j++)
{
matrix3[i][j] = 0;
}
}
//second way of multiplying matrices - (most cache-unfriendly on tested machine)
start2 = clock();
for (j = 0; j < n; j++)
{
for (k = 0; k < n; k++)
{
temp = matrix2[k][j];
for (i = 0; i < n; i++)
{
matrix3[i][j] += matrix1[i][k]*temp;
}
}
}
end2 = clock();
////////////////////////////////////////////////////////////
//resetting matrix3's elements to 0
for(i = 0; i < SIZE; i++)
{
for(j = 0; j < SIZE; j++)
{
matrix3[i][j] = 0;
}
}
//third way of multiplying matrices - (most cache-friendly on tested machine)
start3 = clock();
for (k = 0; k < n; k++)
{
for (i = 0; i < n; i++)
{
temp = matrix1[i][k];
for (j = 0; j < n; j++)
{
matrix3[i][j] += temp*matrix2[k][j];
}
}
}
end3 = clock();
//freeing up memory
for(i = 0; i < SIZE; i++)
{
delete [] matrix1[i];
delete [] matrix2[i];
delete [] matrix3[i];
}
delete [] matrix1;
delete [] matrix2;
delete [] matrix3;
std::cout << "the number of clock ticks elapsed for the first way - " << end1 - start1 << std::endl;
std::cout << "the number of clock ticks elapsed for the second way - " << end2 - start2 << std::endl;
std::cout << "the number of clock ticks elapsed for the third way - " << end3 - start3 << std::endl;
return 0;
}