forked from Spijkervet/CLMR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_evaluation.py
154 lines (129 loc) · 4.45 KB
/
linear_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import argparse
import pytorch_lightning as pl
from torch.utils.data import DataLoader
from torchaudio_augmentations import Compose, RandomResizedCrop
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.loggers import TensorBoardLogger
from clmr.datasets import get_dataset
from clmr.data import ContrastiveDataset
from clmr.evaluation import evaluate
from clmr.models import SampleCNN
from clmr.modules import ContrastiveLearning, LinearEvaluation
from clmr.utils import (
yaml_config_hook,
load_encoder_checkpoint,
load_finetuner_checkpoint,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="SimCLR")
parser = Trainer.add_argparse_args(parser)
config = yaml_config_hook("./config/config.yaml")
for k, v in config.items():
parser.add_argument(f"--{k}", default=v, type=type(v))
args = parser.parse_args()
pl.seed_everything(args.seed)
args.accelerator = None
if not os.path.exists(args.checkpoint_path):
raise FileNotFoundError("That checkpoint does not exist")
train_transform = [RandomResizedCrop(n_samples=args.audio_length)]
# ------------
# dataloaders
# ------------
train_dataset = get_dataset(args.dataset, args.dataset_dir, subset="train")
valid_dataset = get_dataset(args.dataset, args.dataset_dir, subset="valid")
test_dataset = get_dataset(args.dataset, args.dataset_dir, subset="test")
contrastive_train_dataset = ContrastiveDataset(
train_dataset,
input_shape=(1, args.audio_length),
transform=Compose(train_transform),
)
contrastive_valid_dataset = ContrastiveDataset(
valid_dataset,
input_shape=(1, args.audio_length),
transform=Compose(train_transform),
)
contrastive_test_dataset = ContrastiveDataset(
test_dataset,
input_shape=(1, args.audio_length),
transform=None,
)
train_loader = DataLoader(
contrastive_train_dataset,
batch_size=args.finetuner_batch_size,
num_workers=args.workers,
shuffle=True,
)
valid_loader = DataLoader(
contrastive_valid_dataset,
batch_size=args.finetuner_batch_size,
num_workers=args.workers,
shuffle=False,
)
test_loader = DataLoader(
contrastive_test_dataset,
batch_size=args.finetuner_batch_size,
num_workers=args.workers,
shuffle=False,
)
# ------------
# encoder
# ------------
encoder = SampleCNN(
strides=[3, 3, 3, 3, 3, 3, 3, 3, 3],
supervised=args.supervised,
out_dim=train_dataset.n_classes,
)
n_features = encoder.fc.in_features # get dimensions of last fully-connected layer
state_dict = load_encoder_checkpoint(args.checkpoint_path, train_dataset.n_classes)
encoder.load_state_dict(state_dict)
cl = ContrastiveLearning(args, encoder)
cl.eval()
cl.freeze()
module = LinearEvaluation(
args,
cl.encoder,
hidden_dim=n_features,
output_dim=train_dataset.n_classes,
)
train_representations_dataset = module.extract_representations(train_loader)
train_loader = DataLoader(
train_representations_dataset,
batch_size=args.batch_size,
num_workers=args.workers,
shuffle=True,
)
valid_representations_dataset = module.extract_representations(valid_loader)
valid_loader = DataLoader(
valid_representations_dataset,
batch_size=args.batch_size,
num_workers=args.workers,
shuffle=False,
)
if args.finetuner_checkpoint_path:
state_dict = load_finetuner_checkpoint(args.finetuner_checkpoint_path)
module.model.load_state_dict(state_dict)
else:
early_stop_callback = EarlyStopping(
monitor="Valid/loss", patience=10, verbose=False, mode="min"
)
trainer = Trainer.from_argparse_args(
args,
logger=TensorBoardLogger(
"runs", name="CLMRv2-eval-{}".format(args.dataset)
),
max_epochs=args.finetuner_max_epochs,
callbacks=[early_stop_callback],
)
trainer.fit(module, train_loader, valid_loader)
device = "cuda:0" if args.gpus else "cpu"
results = evaluate(
module.encoder,
module.model,
contrastive_test_dataset,
args.dataset,
args.audio_length,
device=device,
)
print(results)