forked from cshen/barnes-hut-sne
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquadtree.cpp
386 lines (314 loc) · 12.1 KB
/
quadtree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
/*
* quadtree.cpp
* Implementation of a quadtree in two dimensions + Barnes-Hut algorithm for t-SNE.
*
* Created by Laurens van der Maaten.
* Copyright 2012, Delft University of Technology. All rights reserved.
*
*/
#include <math.h>
#include <float.h>
#include <cblas.h>
#include <stdlib.h>
#include <stdio.h>
#include "quadtree.h"
// Checks whether a point lies in a cell
bool Cell::containsPoint(double point[])
{
if(x - hw > point[0]) return false;
if(x + hw < point[0]) return false;
if(y - hh > point[1]) return false;
if(y + hh < point[1]) return false;
return true;
}
// Default constructor for quadtree -- build tree, too!
QuadTree::QuadTree(double* inp_data, int N)
{
// Compute mean, width, and height of current map (boundaries of quadtree)
double* mean_Y = new double[QT_NO_DIMS]; for(int d = 0; d < QT_NO_DIMS; d++) mean_Y[d] = .0;
double* min_Y = new double[QT_NO_DIMS]; for(int d = 0; d < QT_NO_DIMS; d++) min_Y[d] = DBL_MAX;
double* max_Y = new double[QT_NO_DIMS]; for(int d = 0; d < QT_NO_DIMS; d++) max_Y[d] = -DBL_MAX;
for(int n = 0; n < N; n++) {
for(int d = 0; d < QT_NO_DIMS; d++) {
mean_Y[d] += inp_data[n * QT_NO_DIMS + d];
if(inp_data[n * QT_NO_DIMS + d] < min_Y[d]) min_Y[d] = inp_data[n * QT_NO_DIMS + d];
if(inp_data[n * QT_NO_DIMS + d] > max_Y[d]) max_Y[d] = inp_data[n * QT_NO_DIMS + d];
}
}
for(int d = 0; d < QT_NO_DIMS; d++) mean_Y[d] /= (double) N;
// Construct quadtree
init(NULL, inp_data, mean_Y[0], mean_Y[1], max(max_Y[0] - mean_Y[0], mean_Y[0] - min_Y[0]) + 1e-5,
max(max_Y[1] - mean_Y[1], mean_Y[1] - min_Y[1]) + 1e-5);
fill(N);
delete[] mean_Y; delete[] max_Y; delete[] min_Y;
}
// Constructor for quadtree with particular size and parent -- build the tree, too!
QuadTree::QuadTree(double* inp_data, int N, double inp_x, double inp_y, double inp_hw, double inp_hh)
{
init(NULL, inp_data, inp_x, inp_y, inp_hw, inp_hh);
fill(N);
}
// Constructor for quadtree with particular size and parent -- build the tree, too!
QuadTree::QuadTree(QuadTree* inp_parent, double* inp_data, int N, double inp_x, double inp_y, double inp_hw, double inp_hh)
{
init(inp_parent, inp_data, inp_x, inp_y, inp_hw, inp_hh);
fill(N);
}
// Constructor for quadtree with particular size (do not fill the tree)
QuadTree::QuadTree(double* inp_data, double inp_x, double inp_y, double inp_hw, double inp_hh)
{
init(NULL, inp_data, inp_x, inp_y, inp_hw, inp_hh);
}
// Constructor for quadtree with particular size and parent (do not fill the tree)
QuadTree::QuadTree(QuadTree* inp_parent, double* inp_data, double inp_x, double inp_y, double inp_hw, double inp_hh)
{
init(inp_parent, inp_data, inp_x, inp_y, inp_hw, inp_hh);
}
// Main initialization function
void QuadTree::init(QuadTree* inp_parent, double* inp_data, double inp_x, double inp_y, double inp_hw, double inp_hh)
{
parent = inp_parent;
data = inp_data;
is_leaf = true;
size = 0;
cum_size = 0;
boundary.x = inp_x;
boundary.y = inp_y;
boundary.hw = inp_hw;
boundary.hh = inp_hh;
northWest = NULL;
northEast = NULL;
southWest = NULL;
southEast = NULL;
for(int i = 0; i < QT_NO_DIMS; i++) center_of_mass[i] = .0;
}
// Destructor for quadtree
QuadTree::~QuadTree()
{
delete northWest;
delete northEast;
delete southWest;
delete southEast;
}
// Update the data underlying this tree
void QuadTree::setData(double* inp_data)
{
data = inp_data;
}
// Get the parent of the current tree
QuadTree* QuadTree::getParent()
{
return parent;
}
// Insert a point into the QuadTree
bool QuadTree::insert(int new_index)
{
// Ignore objects which do not belong in this quad tree
double* point = data + new_index * QT_NO_DIMS;
if(!boundary.containsPoint(point))
return false;
// Online update of cumulative size and center-of-mass
cum_size++;
double mult1 = (double) (cum_size - 1) / (double) cum_size;
double mult2 = 1.0 / (double) cum_size;
for(int d = 0; d < QT_NO_DIMS; d++) center_of_mass[d] *= mult1;
for(int d = 0; d < QT_NO_DIMS; d++) center_of_mass[d] += mult2 * point[d];
// If there is space in this quad tree and it is a leaf, add the object here
if(is_leaf && size < QT_NODE_CAPACITY) {
index[size] = new_index;
size++;
return true;
}
// Don't add duplicates for now (this is not very nice)
bool any_duplicate = false;
for(int n = 0; n < size; n++) {
bool duplicate = true;
for(int d = 0; d < QT_NO_DIMS; d++) {
if(point[d] != data[index[n] * QT_NO_DIMS + d]) { duplicate = false; break; }
}
any_duplicate = any_duplicate | duplicate;
}
if(any_duplicate) return true;
// Otherwise, we need to subdivide the current cell
if(is_leaf) subdivide();
// Find out where the point can be inserted
if(northWest->insert(new_index)) return true;
if(northEast->insert(new_index)) return true;
if(southWest->insert(new_index)) return true;
if(southEast->insert(new_index)) return true;
// Otherwise, the point cannot be inserted (this should never happen)
return false;
}
// Create four children which fully divide this cell into four quads of equal area
void QuadTree::subdivide() {
// Create four children
northWest = new QuadTree(this, data, boundary.x - .5 * boundary.hw, boundary.y - .5 * boundary.hh, .5 * boundary.hw, .5 * boundary.hh);
northEast = new QuadTree(this, data, boundary.x + .5 * boundary.hw, boundary.y - .5 * boundary.hh, .5 * boundary.hw, .5 * boundary.hh);
southWest = new QuadTree(this, data, boundary.x - .5 * boundary.hw, boundary.y + .5 * boundary.hh, .5 * boundary.hw, .5 * boundary.hh);
southEast = new QuadTree(this, data, boundary.x + .5 * boundary.hw, boundary.y + .5 * boundary.hh, .5 * boundary.hw, .5 * boundary.hh);
// Move existing points to correct children
for(int i = 0; i < size; i++) {
bool success = false;
if(!success) success = northWest->insert(index[i]);
if(!success) success = northEast->insert(index[i]);
if(!success) success = southWest->insert(index[i]);
if(!success) success = southEast->insert(index[i]);
index[i] = -1;
}
// Empty parent node
size = 0;
is_leaf = false;
}
// Build quadtree on dataset
void QuadTree::fill(int N)
{
for(int i = 0; i < N; i++) insert(i);
}
// Checks whether the specified tree is correct
bool QuadTree::isCorrect()
{
for(int n = 0; n < size; n++) {
double* point = data + index[n] * QT_NO_DIMS;
if(!boundary.containsPoint(point)) return false;
}
if(!is_leaf) return northWest->isCorrect() &&
northEast->isCorrect() &&
southWest->isCorrect() &&
southEast->isCorrect();
else return true;
}
// Rebuilds a possibly incorrect tree (LAURENS: This function is not tested yet!)
void QuadTree::rebuildTree()
{
for(int n = 0; n < size; n++) {
// Check whether point is erroneous
double* point = data + index[n] * QT_NO_DIMS;
if(!boundary.containsPoint(point)) {
// Remove erroneous point
int rem_index = index[n];
for(int m = n + 1; m < size; m++) index[m - 1] = index[m];
index[size - 1] = -1;
size--;
// Update center-of-mass and counter in all parents
bool done = false;
QuadTree* node = this;
while(!done) {
for(int d = 0; d < QT_NO_DIMS; d++) {
node->center_of_mass[d] = ((double) node->cum_size * node->center_of_mass[d] - point[d]) / (double) (node->cum_size - 1);
}
node->cum_size--;
if(node->getParent() == NULL) done = true;
else node = node->getParent();
}
// Reinsert point in the root tree
node->insert(rem_index);
}
}
// Rebuild lower parts of the tree
northWest->rebuildTree();
northEast->rebuildTree();
southWest->rebuildTree();
southEast->rebuildTree();
}
// Build a list of all indices in quadtree
void QuadTree::getAllIndices(int* indices)
{
getAllIndices(indices, 0);
}
// Build a list of all indices in quadtree
int QuadTree::getAllIndices(int* indices, int loc)
{
// Gather indices in current quadrant
for(int i = 0; i < size; i++) indices[loc + i] = index[i];
loc += size;
// Gather indices in children
if(!is_leaf) {
loc = northWest->getAllIndices(indices, loc);
loc = northEast->getAllIndices(indices, loc);
loc = southWest->getAllIndices(indices, loc);
loc = southEast->getAllIndices(indices, loc);
}
return loc;
}
int QuadTree::getDepth() {
if(is_leaf) return 1;
return 1 + max(max(northWest->getDepth(),
northEast->getDepth()),
max(southWest->getDepth(),
southEast->getDepth()));
}
// Compute non-edge forces using Barnes-Hut algorithm
void QuadTree::computeNonEdgeForces(int point_index, double theta, double neg_f[], double* sum_Q)
{
// Make sure that we spend no time on empty nodes or self-interactions
if(cum_size == 0 || (is_leaf && size == 1 && index[0] == point_index)) return;
// Compute distance between point and center-of-mass
double D = .0;
int ind = point_index * QT_NO_DIMS;
for(int d = 0; d < QT_NO_DIMS; d++) buff[d] = data[ind + d];
for(int d = 0; d < QT_NO_DIMS; d++) buff[d] -= center_of_mass[d];
for(int d = 0; d < QT_NO_DIMS; d++) D += buff[d] * buff[d];
// Check whether we can use this node as a "summary"
if(is_leaf || max(boundary.hh, boundary.hw) / sqrt(D) < theta) {
// Compute and add t-SNE force between point and current node
double Q = 1.0 / (1.0 + D);
*sum_Q += cum_size * Q;
double mult = cum_size * Q * Q;
for(int d = 0; d < QT_NO_DIMS; d++) neg_f[d] += mult * buff[d];
}
else {
// Recursively apply Barnes-Hut to children
northWest->computeNonEdgeForces(point_index, theta, neg_f, sum_Q);
northEast->computeNonEdgeForces(point_index, theta, neg_f, sum_Q);
southWest->computeNonEdgeForces(point_index, theta, neg_f, sum_Q);
southEast->computeNonEdgeForces(point_index, theta, neg_f, sum_Q);
}
}
// Computes edge forces
void QuadTree::computeEdgeForces(int* row_P, int* col_P, double* val_P, int N, double* pos_f)
{
// Loop over all edges in the graph
int ind1, ind2;
double D;
for(int n = 0; n < N; n++) {
ind1 = n * QT_NO_DIMS;
for(int i = row_P[n]; i < row_P[n + 1]; i++) {
// Compute pairwise distance and Q-value
D = .0;
ind2 = col_P[i] * QT_NO_DIMS;
for(int d = 0; d < QT_NO_DIMS; d++) buff[d] = data[ind1 + d];
for(int d = 0; d < QT_NO_DIMS; d++) buff[d] -= data[ind2 + d];
for(int d = 0; d < QT_NO_DIMS; d++) D += buff[d] * buff[d];
D = val_P[i] / (1.0 + D);
// Sum positive force
for(int d = 0; d < QT_NO_DIMS; d++) pos_f[ind1 + d] += D * buff[d];
}
}
}
// Print out tree
void QuadTree::print()
{
if(cum_size == 0) {
printf("Empty node\n");
return;
}
if(is_leaf) {
printf("Leaf node; data = [");
for(int i = 0; i < size; i++) {
double* point = data + index[i] * QT_NO_DIMS;
for(int d = 0; d < QT_NO_DIMS; d++) printf("%f, ", point[d]);
printf(" (index = %d)", index[i]);
if(i < size - 1) printf("\n");
else printf("]\n");
}
}
else {
printf("Intersection node with center-of-mass = [");
for(int d = 0; d < QT_NO_DIMS; d++) printf("%f, ", center_of_mass[d]);
printf("]; children are:\n");
northEast->print();
northWest->print();
southEast->print();
southWest->print();
}
}