forked from HIIT/knowledge-elicitation-for-linear-regression
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate_results_all.m
109 lines (98 loc) · 4.29 KB
/
evaluate_results_all.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
clear all
close all
% The current visualization script can only draw the heat map for the case
% when we iterate through the #training_data or #dimensions, assuming the
% other one as a constant value
load('results_all')
num_methods = size(Method_list,2);
num_iterations = size(decisions,2);
num_runs = size(decisions,3);
%display useful information about the simulation
disp(struct2table(sparse_params));
if MODE == 1
disp('Feedback is on the weight value of features');
end
if MODE == 2
disp('Feedback is on the relevance of features');
end
disp(['Number of "relevant" features: ', num2str(sum(z_star==1)),'.']);
disp(['Number of "do not know" features: ', num2str(sum(z_star==-1)),'.']);
if size(num_trainingdata,2) == 1
disp(['The number of training data is fixed to ', num2str(num_trainingdata) ,'. (runs over dimensions).']);
end
if size(num_features,2) == 1
disp(['The number of dimensions is fixed to ', num2str(num_features) ,'. (runs over training data.)']);
end
disp(['Averaged over ', num2str(num_runs), ' runs']);
for loss_function = 1:2
if loss_function == 1
loss = Loss_1;
end
if loss_function == 2
loss = Loss_2;
end
if size(num_trainingdata,2) == 1
%% Assume that the #training_data is fixed and iterate through #dimensions
t_index = 1;
figure();
heat_map = zeros(num_iterations,size(num_features,2),num_methods);
for f_index = 1:size(num_features,2)
cutted_loss = loss(:,:,:,f_index,t_index);
temp = mean(cutted_loss,3); %average over different runs
for method = 1:num_methods
heat_map(:,f_index,method) = temp(method,:)'; %create a heatmap for each method
end
end
temp_num_features = num_features;
min_val = min(heat_map(:));
max_val = max(heat_map(:));
for method = 1:num_methods
subplot(2,1,method)
% figure
imagesc(heat_map(:,:,method), [min_val,max_val]);
axis xy
title(Method_list(method),'FontSize',16)
set(gca, 'XTick', 1:floor(length(temp_num_features)/10):length(temp_num_features)); % Change x-axis ticks
set(gca, 'XTickLabel', temp_num_features(1:floor(length(temp_num_features)/10):length(temp_num_features))); % Change x-axis ticks labels.
xlabel('number of dimensions','FontSize',16)
ylabel('number of expert feedbacks','FontSize',16)
% pcolor(heat_map(:,:,method))
% colormap(gray)
% colorbar();
end
end
if size(num_features,2) == 1
%% Assume that the #dimensions is fixed and iterate through #training_data
f_index = 1;
figure();
heat_map = zeros(num_iterations,size(num_trainingdata,2),num_methods);
for t_index = 1:size(num_trainingdata,2)
cutted_loss = loss(:,:,:,f_index,t_index);
temp = mean(cutted_loss,3); %average over different runs
for method = 1:num_methods
heat_map(:,t_index,method) = temp(method,:)'; %create a heatmap for each method
end
end
temp_num_trainingdata = num_trainingdata;
%(optional) remove some parts of the figure - next three lines
% remove_first_k_iteration=3;
% heat_map(:,1:remove_first_k_iteration,:) = [];
% temp_num_trainingdata = num_trainingdata(remove_first_k_iteration+1:size(num_trainingdata,2));
min_val = min(heat_map(:));
max_val = max(heat_map(:));
for method = 1:num_methods
subplot(2,1,method)
% figure
imagesc(heat_map(:,:,method), [min_val,max_val]);
axis xy
title(Method_list(method),'FontSize',16)
xlabel('number of training data','FontSize',16)
set(gca, 'XTick', 1:floor(length(temp_num_trainingdata)/20):length(temp_num_trainingdata)); % Change x-axis ticks
set(gca, 'XTickLabel', temp_num_trainingdata(1:floor(length(temp_num_trainingdata)/20):length(temp_num_trainingdata))); % Change x-axis ticks labels.
ylabel('number of expert feedbacks','FontSize',16)
% pcolor(heat_map(:,:,method))
% colormap(gray)
% colorbar();
end
end
end