forked from MarvinTeichmann/tensorflow-fcn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fcn16_vgg.py
411 lines (340 loc) · 16 KB
/
fcn16_vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import logging
from math import ceil
import sys
import numpy as np
import tensorflow as tf
VGG_MEAN = [103.939, 116.779, 123.68]
class FCN16VGG:
def __init__(self, vgg16_npy_path=None):
if vgg16_npy_path is None:
path = sys.modules[self.__class__.__module__].__file__
# print path
path = os.path.abspath(os.path.join(path, os.pardir))
# print path
path = os.path.join(path, "vgg16.npy")
vgg16_npy_path = path
logging.info("Load npy file from '%s'.", vgg16_npy_path)
if not os.path.isfile(vgg16_npy_path):
logging.error(("File '%s' not found. Download it from "
"https://dl.dropboxusercontent.com/u/"
"50333326/vgg16.npy"), vgg16_npy_path)
sys.exit(1)
self.data_dict = np.load(vgg16_npy_path, encoding='latin1').item()
self.wd = 5e-4
print("npy file loaded")
def build(self, rgb, train=False, num_classes=20, random_init_fc8=False,
debug=False):
"""
Build the VGG model using loaded weights
Parameters
----------
rgb: image batch tensor
Image in rgb shap. Scaled to Intervall [0, 255]
train: bool
Whether to build train or inference graph
num_classes: int
How many classes should be predicted (by fc8)
random_init_fc8 : bool
Whether to initialize fc8 layer randomly.
Finetuning is required in this case.
debug: bool
Whether to print additional Debug Information.
"""
# Convert RGB to BGR
with tf.name_scope('Processing'):
red, green, blue = tf.split(3, 3, rgb)
# assert red.get_shape().as_list()[1:] == [224, 224, 1]
# assert green.get_shape().as_list()[1:] == [224, 224, 1]
# assert blue.get_shape().as_list()[1:] == [224, 224, 1]
bgr = tf.concat(3, [
blue - VGG_MEAN[0],
green - VGG_MEAN[1],
red - VGG_MEAN[2],
])
if debug:
bgr = tf.Print(bgr, [tf.shape(bgr)],
message='Shape of input image: ',
summarize=4, first_n=1)
self.conv1_1 = self._conv_layer(bgr, "conv1_1")
self.conv1_2 = self._conv_layer(self.conv1_1, "conv1_2")
self.pool1 = self._max_pool(self.conv1_2, 'pool1', debug)
self.conv2_1 = self._conv_layer(self.pool1, "conv2_1")
self.conv2_2 = self._conv_layer(self.conv2_1, "conv2_2")
self.pool2 = self._max_pool(self.conv2_2, 'pool2', debug)
self.conv3_1 = self._conv_layer(self.pool2, "conv3_1")
self.conv3_2 = self._conv_layer(self.conv3_1, "conv3_2")
self.conv3_2 = self._conv_layer(self.conv3_2, "conv3_3")
self.pool3 = self._max_pool(self.conv3_2, 'pool3', debug)
self.conv4_1 = self._conv_layer(self.pool3, "conv4_1")
self.conv4_2 = self._conv_layer(self.conv4_1, "conv4_2")
self.conv4_3 = self._conv_layer(self.conv4_2, "conv4_3")
self.pool4 = self._max_pool(self.conv4_3, 'pool4', debug)
self.conv5_1 = self._conv_layer(self.pool4, "conv5_1")
self.conv5_2 = self._conv_layer(self.conv5_1, "conv5_2")
self.conv5_3 = self._conv_layer(self.conv5_2, "conv5_3")
self.pool5 = self._max_pool(self.conv5_3, 'pool5', debug)
self.fc6 = self._fc_layer(self.pool5, "fc6")
if train:
self.fc6 = tf.nn.dropout(self.fc6, 0.5)
self.fc7 = self._fc_layer(self.fc6, "fc7")
if train:
self.fc7 = tf.nn.dropout(self.fc7, 0.5)
if random_init_fc8:
self.score_fr = self._score_layer(self.fc7, "score_fr",
num_classes)
else:
self.score_fr = self._fc_layer(self.fc7, "score_fr",
num_classes=num_classes,
relu=False)
self.pred = tf.argmax(self.score_fr, dimension=3)
self.upscore2 = self._upscore_layer(self.score_fr,
shape=tf.shape(self.pool4),
num_classes=num_classes,
debug=debug, name='upscore2',
ksize=4, stride=2)
self.score_pool4 = self._score_layer(self.pool4, "score_pool4",
num_classes=num_classes)
self.fuse_pool4 = tf.add(self.upscore2, self.score_pool4)
self.upscore32 = self._upscore_layer(self.fuse_pool4,
shape=tf.shape(bgr),
num_classes=num_classes,
debug=debug, name='upscore32',
ksize=32, stride=16)
self.pred_up = tf.argmax(self.upscore32, dimension=3)
def _max_pool(self, bottom, name, debug):
pool = tf.nn.max_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
padding='SAME', name=name)
if debug:
pool = tf.Print(pool, [tf.shape(pool)],
message='Shape of %s' % name,
summarize=4, first_n=1)
return pool
def _conv_layer(self, bottom, name):
with tf.variable_scope(name) as scope:
filt = self.get_conv_filter(name)
conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME')
conv_biases = self.get_bias(name)
bias = tf.nn.bias_add(conv, conv_biases)
relu = tf.nn.relu(bias)
# Add summary to Tensorboard
_activation_summary(relu)
return relu
def _fc_layer(self, bottom, name, num_classes=None,
relu=True, debug=False):
with tf.variable_scope(name) as scope:
shape = bottom.get_shape().as_list()
if name == 'fc6':
filt = self.get_fc_weight_reshape(name, [7, 7, 512, 4096])
elif name == 'score_fr':
name = 'fc8' # Name of score_fr layer in VGG Model
filt = self.get_fc_weight_reshape(name, [1, 1, 4096, 1000],
num_classes=num_classes)
else:
filt = self.get_fc_weight_reshape(name, [1, 1, 4096, 4096])
conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME')
conv_biases = self.get_bias(name, num_classes=num_classes)
bias = tf.nn.bias_add(conv, conv_biases)
if relu:
bias = tf.nn.relu(bias)
_activation_summary(bias)
if debug:
bias = tf.Print(bias, [tf.shape(bias)],
message='Shape of %s' % name,
summarize=4, first_n=1)
return bias
def _score_layer(self, bottom, name, num_classes):
with tf.variable_scope(name) as scope:
# get number of input channels
in_features = bottom.get_shape()[3].value
shape = [1, 1, in_features, num_classes]
# He initialization Sheme
if name == "score_fr":
num_input = in_features
stddev = (2 / num_input)**0.5
elif name == "score_pool4":
stddev = 0.001
# Apply convolution
w_decay = self.wd
weights = self._variable_with_weight_decay(shape, stddev, w_decay)
conv = tf.nn.conv2d(bottom, weights, [1, 1, 1, 1], padding='SAME')
# Apply bias
conv_biases = self._bias_variable([num_classes], constant=0.0)
bias = tf.nn.bias_add(conv, conv_biases)
_activation_summary(bias)
return bias
def _upscore_layer(self, bottom, shape,
num_classes, name, debug,
ksize=4, stride=2):
strides = [1, stride, stride, 1]
with tf.variable_scope(name):
in_features = bottom.get_shape()[3].value
if shape is None:
# Compute shape out of Bottom
in_shape = tf.shape(bottom)
h = ((in_shape[1] - 1) * stride) + 1
w = ((in_shape[2] - 1) * stride) + 1
new_shape = [in_shape[0], h, w, num_classes]
else:
new_shape = [shape[0], shape[1], shape[2], num_classes]
output_shape = tf.pack(new_shape)
logging.debug("Layer: %s, Fan-in: %d" % (name, in_features))
f_shape = [ksize, ksize, num_classes, in_features]
# create
num_input = ksize * ksize * in_features / stride
stddev = (2 / num_input)**0.5
weights = self.get_deconv_filter(f_shape)
deconv = tf.nn.conv2d_transpose(bottom, weights, output_shape,
strides=strides, padding='SAME')
if debug:
deconv = tf.Print(deconv, [tf.shape(deconv)],
message='Shape of %s' % name,
summarize=4, first_n=1)
_activation_summary(deconv)
return deconv
def get_deconv_filter(self, f_shape):
width = f_shape[0]
heigh = f_shape[0]
f = ceil(width/2.0)
c = (2 * f - 1 - f % 2) / (2.0 * f)
bilinear = np.zeros([f_shape[0], f_shape[1]])
for x in range(width):
for y in range(heigh):
value = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
bilinear[x, y] = value
weights = np.zeros(f_shape)
for i in range(f_shape[2]):
weights[:, :, i, i] = bilinear
init = tf.constant_initializer(value=weights,
dtype=tf.float32)
return tf.get_variable(name="up_filter", initializer=init,
shape=weights.shape)
def get_conv_filter(self, name):
init = tf.constant_initializer(value=self.data_dict[name][0],
dtype=tf.float32)
shape = self.data_dict[name][0].shape
print('Layer name: %s' % name)
print('Layer shape: %s' % str(shape))
var = tf.get_variable(name="filter", initializer=init, shape=shape)
if not tf.get_variable_scope().reuse:
weight_decay = tf.mul(tf.nn.l2_loss(var), self.wd,
name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
def get_bias(self, name, num_classes=None):
bias_wights = self.data_dict[name][1]
shape = self.data_dict[name][1].shape
if name == 'fc8':
bias_wights = self._bias_reshape(bias_wights, shape[0],
num_classes)
shape = [num_classes]
init = tf.constant_initializer(value=bias_wights,
dtype=tf.float32)
return tf.get_variable(name="biases", initializer=init, shape=shape)
def get_fc_weight(self, name):
init = tf.constant_initializer(value=self.data_dict[name][0],
dtype=tf.float32)
shape = self.data_dict[name][0].shape
var = tf.get_variable(name="weights", initializer=init, shape=shape)
if not tf.get_variable_scope().reuse:
weight_decay = tf.mul(tf.nn.l2_loss(var), self.wd,
name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
def _bias_reshape(self, bweight, num_orig, num_new):
""" Build bias weights for filter produces with `_summary_reshape`
"""
n_averaged_elements = num_orig//num_new
avg_bweight = np.zeros(num_new)
for i in range(0, num_orig, n_averaged_elements):
start_idx = i
end_idx = start_idx + n_averaged_elements
avg_idx = start_idx//n_averaged_elements
if avg_idx == num_new:
break
avg_bweight[avg_idx] = np.mean(bweight[start_idx:end_idx])
return avg_bweight
def _summary_reshape(self, fweight, shape, num_new):
""" Produce weights for a reduced fully-connected layer.
FC8 of VGG produces 1000 classes. Most semantic segmentation
task require much less classes. This reshapes the original weights
to be used in a fully-convolutional layer which produces num_new
classes. To archive this the average (mean) of n adjanced classes is
taken.
Consider reordering fweight, to perserve semantic meaning of the
weights.
Args:
fweight: original weights
shape: shape of the desired fully-convolutional layer
num_new: number of new classes
Returns:
Filter weights for `num_new` classes.
"""
num_orig = shape[3]
shape[3] = num_new
assert(num_new < num_orig)
n_averaged_elements = num_orig//num_new
avg_fweight = np.zeros(shape)
for i in range(0, num_orig, n_averaged_elements):
start_idx = i
end_idx = start_idx + n_averaged_elements
avg_idx = start_idx//n_averaged_elements
if avg_idx == num_new:
break
avg_fweight[:, :, :, avg_idx] = np.mean(
fweight[:, :, :, start_idx:end_idx], axis=3)
return avg_fweight
def _variable_with_weight_decay(self, shape, stddev, wd):
"""Helper to create an initialized Variable with weight decay.
Note that the Variable is initialized with a truncated normal
distribution.
A weight decay is added only if one is specified.
Args:
name: name of the variable
shape: list of ints
stddev: standard deviation of a truncated Gaussian
wd: add L2Loss weight decay multiplied by this float. If None, weight
decay is not added for this Variable.
Returns:
Variable Tensor
"""
initializer = tf.truncated_normal_initializer(stddev=stddev)
var = tf.get_variable('weights', shape=shape,
initializer=initializer)
if wd and (not tf.get_variable_scope().reuse):
weight_decay = tf.mul(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
def _bias_variable(self, shape, constant=0.0):
initializer = tf.constant_initializer(constant)
return tf.get_variable(name='biases', shape=shape,
initializer=initializer)
def get_fc_weight_reshape(self, name, shape, num_classes=None):
print('Layer name: %s' % name)
print('Layer shape: %s' % shape)
weights = self.data_dict[name][0]
weights = weights.reshape(shape)
if num_classes is not None:
weights = self._summary_reshape(weights, shape,
num_new=num_classes)
init = tf.constant_initializer(value=weights,
dtype=tf.float32)
return tf.get_variable(name="weights", initializer=init, shape=shape)
def _activation_summary(x):
"""Helper to create summaries for activations.
Creates a summary that provides a histogram of activations.
Creates a summary that measure the sparsity of activations.
Args:
x: Tensor
Returns:
nothing
"""
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
tensor_name = x.op.name
# tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
tf.histogram_summary(tensor_name + '/activations', x)
tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))