-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyaml_utils.py
170 lines (140 loc) · 6.95 KB
/
yaml_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/usr/bin/env python
'''
Author: Prag Batra prag@stanford.edu
Purpose:
Helper methods for parsing YAML configuration files (e.g. for STMP).
Explanation:
Example:
'''
import yaml
import yaml_keys
import re
import os
from collections import OrderedDict
import logging
"""Make PyYAML output an OrderedDict.
It will do so fine if you use yaml.dump(), but that generates ugly,
non-standard YAML code.
To use yaml.safe_dump(), you need the following.
(Credit goes to http://blog.elsdoerfer.name/2012/07/26/make-pyyaml-output-an-ordereddict/ and https://gist.github.com/miracle2k/3184458#file-odict-py)
"""
def represent_odict(dump, tag, mapping, flow_style=None):
"""Like BaseRepresenter.represent_mapping, but does not issue the sort().
"""
value = []
node = yaml.MappingNode(tag, value, flow_style=flow_style)
if dump.alias_key is not None:
dump.represented_objects[dump.alias_key] = node
best_style = True
if hasattr(mapping, 'items'):
mapping = mapping.items()
for item_key, item_value in mapping:
node_key = dump.represent_data(item_key)
node_value = dump.represent_data(item_value)
if not (isinstance(node_key, yaml.ScalarNode) and not node_key.style):
best_style = False
if not (isinstance(node_value, yaml.ScalarNode) and not node_value.style):
best_style = False
value.append((node_key, node_value))
if flow_style is None:
if dump.default_flow_style is not None:
node.flow_style = dump.default_flow_style
else:
node.flow_style = best_style
return node
yaml.SafeDumper.add_representer(OrderedDict,
lambda dumper, value: represent_odict(dumper, u'tag:yaml.org,2002:map', value))
# works for both list and dictionary of columns
def convertColumns(cols, yaml_commands):
actualCols = []
yaml_datasets = get_datasets(yaml_commands)
for col in cols:
if(isinstance(col, list)):
convertedColList = convertColumns(col, yaml_commands) # recursion
actualCols.append(convertedColList)
continue
if('.' not in col): # nothing to do here
actualCols.append(col)
continue
#else
colComponents = col.split('.')
dataset_yaml = yaml_datasets[colComponents[0]]
dataset_annotation_name = dataset_yaml[yaml_keys.kDAnnotation]
if(dataset_yaml[yaml_keys.kDCategory] == yaml_keys.kDCategoryTypeRegion):
dataset_annotation_name += '_r'
actualCols.append(dataset_annotation_name+'_'+colComponents[1])
return actualCols
# helper function to load yaml datasets as an ordered dictionary as opposed to a regular (unordered) dictionary
def ordered_load(stream, Loader=yaml.Loader, object_pairs_hook=OrderedDict):
class OrderedLoader(Loader):
pass
def construct_mapping(loader, node):
loader.flatten_mapping(node)
return object_pairs_hook(loader.construct_pairs(node))
OrderedLoader.add_constructor(
yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG,
construct_mapping)
return yaml.load(stream, OrderedLoader)
# loads YAML file and returns content as nested python dictionaries/arrays
# NOTE: generally, you should use parse_yaml_input_files below instead
def parse_yaml(loc, load_ordered = False):
# Parse a YAML file which will instruct the annotation steps to be completed.
with open(loc, "r") as stream:
if(load_ordered):
yaml_commands = ordered_load(stream, yaml.SafeLoader)
else:
yaml_commands = yaml.safe_load(stream)
return yaml_commands
# combines yaml input files, parses, and outputs single python structure containing commands (nested dictionaries, etc.)
def parse_yaml_input_files(dataset_file, modules_file):
config_cmds = {}
dataset_cmds = parse_yaml(dataset_file, load_ordered=True) # info about each dataset (including defaults)
dataset_default_cmds = dataset_cmds[yaml_keys.kDDefaults]
del dataset_cmds[yaml_keys.kDDefaults]
module_cmds = parse_yaml(modules_file)
#combine info to yield final config commands
config_cmds[yaml_keys.kModules] = module_cmds
config_cmds[yaml_keys.kDatasets] = dataset_cmds # = datasets since we deleted defaults from here
config_cmds[yaml_keys.kDatasetDefaults] = dataset_default_cmds
return config_cmds
# exports existing yaml commands to output YAML files (modules.yml and datasets.yml), which can be used to rerun STMP with the same configuration.
def write_output_yaml_files(yaml_commands, output_dir):
#write datasets.yml
dataset_defaults = {}
dataset_defaults[yaml_keys.kDDefaults] = yaml_commands[yaml_keys.kDatasetDefaults]
datasets = get_datasets(yaml_commands)
#create 1 big ordereddict containing defaults followed by per-dataset info
datasets_and_defaults = OrderedDict(list(dataset_defaults.items()) + list(datasets.items()))
datasets_out = open(os.path.join(output_dir, 'datasets.yml'), 'w')
yaml.safe_dump(datasets_and_defaults, datasets_out, default_flow_style=False)
datasets_out.close()
#write modules.yml
modules = yaml_commands[yaml_keys.kModules]
modules_out = open(os.path.join(output_dir, 'modules.yml'), 'w')
yaml.safe_dump(modules, modules_out, default_flow_style=False)
modules_out.close()
# gets absolute path wrt location of this file (which should be in the same directory as stmp.py)
def get_abs_path(yaml_path):
script_dir = os.path.dirname(os.path.realpath(__file__))
if(not yaml_path.startswith('/')): # not an absolute path
yaml_path = os.path.join(script_dir, yaml_path)
return yaml_path
# splits a given set of threshold values for a column using the separator specified in the YAML tiering config
def split_multiple_col_thresholds(col_threshold_str, yaml_commands):
col_threshold_separator = yaml_commands[yaml_keys.kModules][yaml_keys.kTiering][yaml_keys.kTColMultipleThresholdSeparator]
return col_threshold_str.split(col_threshold_separator)
# gets ordered list of all datasets (as an OrderedDict)
def get_datasets(yaml_commands):
return yaml_commands[yaml_keys.kDatasets]
def get_dataset_defaults(yaml_commands):
return yaml_commands[yaml_keys.kDatasetDefaults]
def is_region_dataset(dataset_yaml_name, yaml_commands):
return get_datasets(yaml_commands)[dataset_yaml_name][yaml_keys.kDCategory] == yaml_keys.kDCategoryTypeRegion
# converts from annotated dataset name to top-level dataset name in yaml file
def annotated_to_yaml_dataset_name(annotated_dataset_name, yaml_commands):
datasets_yaml = get_datasets(yaml_commands)
for dataset in datasets_yaml:
if(annotated_dataset_name == datasets_yaml[dataset][yaml_keys.kDAnnotation] or (datasets_yaml[dataset][yaml_keys.kDCategory] == yaml_keys.kDCategoryTypeRegion and re.sub('_r$', '', annotated_dataset_name) == datasets_yaml[dataset][yaml_keys.kDAnnotation])):
return dataset
#else
raise ValueError('Could not find dataset in YAML: ' + str(annotated_dataset_name))