-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathPrednetModel.py
252 lines (193 loc) · 8.32 KB
/
PrednetModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import torch
from torch import nn
from torch.autograd import Variable
from model.DiscriminativeCell import DiscriminativeCell
from model.GenerativeCell import GenerativeCell
# Define some constants
OUT_LAYER_SIZE = (3,) + tuple(2 ** p for p in range(4, 10))
ERR_LAYER_SIZE = tuple(size * 2 for size in OUT_LAYER_SIZE)
IN_LAYER_SIZE = (3,) + ERR_LAYER_SIZE
class PrednetModel(nn.Module):
"""
Build the Prednet model
"""
def __init__(self, error_size_list):
super().__init__()
self.number_of_layers = len(error_size_list)
for layer in range(0, self.number_of_layers):
setattr(self, 'discriminator_' + str(layer + 1), DiscriminativeCell(
input_size={'input': IN_LAYER_SIZE[layer], 'state': OUT_LAYER_SIZE[layer]},
hidden_size=OUT_LAYER_SIZE[layer],
first=(not layer)
))
setattr(self, 'generator_' + str(layer + 1), GenerativeCell(
input_size={'error': ERR_LAYER_SIZE[layer], 'up_state':
OUT_LAYER_SIZE[layer + 1] if layer != self.number_of_layers - 1 else 0},
hidden_size=OUT_LAYER_SIZE[layer],
error_init_size=error_size_list[layer]
))
def forward(self, bottom_up_input, error, state):
# generative branch
up_state = None
for layer in reversed(range(0, self.number_of_layers)):
state[layer] = getattr(self, 'generator_' + str(layer + 1))(
error[layer], up_state, state[layer]
)
up_state = state[layer][0]
# discriminative branch
for layer in range(0, self.number_of_layers):
error[layer] = getattr(self, 'discriminator_' + str(layer + 1))(
layer and error[layer - 1] or bottom_up_input,
state[layer][0]
)
return error, state
class _BuildOneLayerModel(nn.Module):
"""
Build a one layer Prednet model
"""
def __init__(self, error_size_list):
super().__init__()
self.discriminator = DiscriminativeCell(
input_size={'input': IN_LAYER_SIZE[0], 'state': OUT_LAYER_SIZE[0]},
hidden_size=OUT_LAYER_SIZE[0],
first=True
)
self.generator = GenerativeCell(
input_size={'error': ERR_LAYER_SIZE[0], 'up_state': 0},
hidden_size=OUT_LAYER_SIZE[0],
error_init_size=error_size_list[0]
)
def forward(self, bottom_up_input, prev_error, state):
state = self.generator(prev_error, None, state)
error = self.discriminator(bottom_up_input, state[0])
return error, state
class _BuildTwoLayerModel(nn.Module):
"""
Build a two layer Prednet model
"""
def __init__(self, error_size_list):
super().__init__()
self.discriminator_1 = DiscriminativeCell(
input_size={'input': IN_LAYER_SIZE[0], 'state': OUT_LAYER_SIZE[0]},
hidden_size=OUT_LAYER_SIZE[0],
first=True
)
self.discriminator_2 = DiscriminativeCell(
input_size={'input': IN_LAYER_SIZE[1], 'state': OUT_LAYER_SIZE[1]},
hidden_size=OUT_LAYER_SIZE[1]
)
self.generator_1 = GenerativeCell(
input_size={'error': ERR_LAYER_SIZE[0], 'up_state': OUT_LAYER_SIZE[1]},
hidden_size=OUT_LAYER_SIZE[0],
error_init_size=error_size_list[0]
)
self.generator_2 = GenerativeCell(
input_size={'error': ERR_LAYER_SIZE[1], 'up_state': 0},
hidden_size=OUT_LAYER_SIZE[1],
error_init_size=error_size_list[1]
)
def forward(self, bottom_up_input, error, state):
state[1] = self.generator_2(error[1], None, state[1])
state[0] = self.generator_1(error[0], state[1][0], state[0])
error[0] = self.discriminator_1(bottom_up_input, state[0][0])
error[1] = self.discriminator_2(error[0], state[1][0])
return error, state
def _test_one_layer_model():
print('\nCreate the input image')
input_image = Variable(torch.rand(1, 3, 8, 12))
print('Input has size', list(input_image.data.size()))
error_init_size = (1, 6, 8, 12)
print('The error initialisation size is', error_init_size)
print('Define a 1 layer Prednet')
model = _BuildOneLayerModel((error_init_size,))
print('Forward input and state to the model')
state = None
error = None
error, state = model(input_image, prev_error=error, state=state)
print('The error has size', list(error.data.size()))
print('The state has size', list(state[0].data.size()))
def _test_two_layer_model():
print('\nCreate the input image')
input_image = Variable(torch.rand(1, 3, 8, 12))
print('Input has size', list(input_image.data.size()))
error_init_size_list = ((1, 6, 8, 12), (1, 32, 4, 6))
print('The error initialisation sizes are', *error_init_size_list)
print('Define a 2 layer Prednet')
model = _BuildTwoLayerModel(error_init_size_list)
print('Forward input and state to the model')
state = [None] * 2
error = [None] * 2
error, state = model(input_image, error=error, state=state)
for layer in range(0, 2):
print('Layer', layer + 1, 'error has size', list(error[layer].data.size()))
print('Layer', layer + 1, 'state has size', list(state[layer][0].data.size()))
def _test_L_layer_model():
max_number_of_layers = 5
for L in range(0, max_number_of_layers):
print('\n---------- Test', str(L + 1), 'layer network ----------')
print('Create the input image')
input_image = Variable(torch.rand(1, 3, 4 * 2 ** L, 6 * 2 ** L))
print('Input has size', list(input_image.data.size()))
error_init_size_list = tuple(
(1, ERR_LAYER_SIZE[l], 4 * 2 ** (L-l), 6 * 2 ** (L-l)) for l in range(0, L + 1)
)
print('The error initialisation sizes are', *error_init_size_list)
print('Define a', str(L + 1), 'layer Prednet')
model = PrednetModel(error_init_size_list)
print('Forward input and state to the model')
state = [None] * (L + 1)
error = [None] * (L + 1)
error, state = model(input_image, error=error, state=state)
for layer in range(0, L + 1):
print('Layer', layer + 1, 'error has size', list(error[layer].data.size()))
print('Layer', layer + 1, 'state has size', list(state[layer][0].data.size()))
def _test_training():
number_of_layers = 3
T = 6 # sequence length
max_epoch = 10 # number of epochs
lr = 1e-1 # learning rate
# set manual seed
torch.manual_seed(0)
L = number_of_layers - 1
print('\n---------- Train a', str(L + 1), 'layer network ----------')
print('Create the input image and target sequences')
input_sequence = Variable(torch.rand(T, 1, 3, 4 * 2 ** L, 6 * 2 ** L))
print('Input has size', list(input_sequence.data.size()))
error_init_size_list = tuple(
(1, ERR_LAYER_SIZE[l], 4 * 2 ** (L - l), 6 * 2 ** (L - l)) for l in range(0, L + 1)
)
print('The error initialisation sizes are', *error_init_size_list)
target_sequence = Variable(torch.zeros(T, *error_init_size_list[0]))
print('Define a', str(L + 1), 'layer Prednet')
model = PrednetModel(error_init_size_list)
print('Create a MSE criterion')
loss_fn = nn.MSELoss()
print('Run for', max_epoch, 'iterations')
for epoch in range(0, max_epoch):
state = [None] * (L + 1)
error = [None] * (L + 1)
loss = 0
for t in range(0, T):
error, state = model(input_sequence[t], error, state)
loss += loss_fn(error[0], target_sequence[t])
print(' > Epoch {:2d} loss: {:.3f}'.format((epoch + 1), loss.data[0]))
# zero grad parameters
model.zero_grad()
# compute new grad parameters through time!
loss.backward()
# learning_rate step against the gradient
for p in model.parameters():
p.data.sub_(p.grad.data * lr)
def _main():
_test_one_layer_model()
_test_two_layer_model()
_test_L_layer_model()
_test_training()
if __name__ == '__main__':
_main()
__author__ = "Alfredo Canziani"
__credits__ = ["Alfredo Canziani"]
__maintainer__ = "Alfredo Canziani"
__email__ = "alfredo.canziani@gmail.com"
__status__ = "Prototype" # "Prototype", "Development", or "Production"
__date__ = "Feb 17"